一、引言
作者后面会使用MaxCompute,所以在进行学习研究,总会有一些疑问产生,这里讲讲作者的疑问和思路
二、介绍
MaxCompute(原名 ODPS - Open Data Processing Service)是阿里云提供的大数据处理平台,专门用于批量数据存储和大规模并行计算。它广泛应用于数据分析和处理任务,为企业级数据处理提供高效的解决方案。
下面是 MaxCompute 的一些主要功能和应用场景:
-
大规模数据存储:MaxCompute 提供高效的数据存储解决方案,可以存储 PB 级别的数据,支持结构化和半结构化数据。它的存储系统具有高可用性和高可靠性。
-
大数据计算引擎:MaxCompute 提供了强大的计算能力,能够处理大规模数据集。它支持 SQL 、MapReduce 、Graph 和 UDF(用户自定义函数)等多种计算模型,为复杂数据分析提供支持。
-
高效的资源管理:MaxCompute 通过资源组、任务队列等资源管理机制,能够实现资源的高效调度和利用,确保计算任务的高效进行。
-
安全和权限管理:MaxCompute 提供了完善的安全机制,包括数据访问权限控制、数据加密等,确保数据的安全性。
-
数据处理和分析:适用于多种数据处理和分析任务,包括数据清洗、预处理、数据挖掘、统计分析等。它可以与阿里云其他大数据产品(如 DataWorks 、AnalyticDB)集成,形成完整的大数据解决方案。
-
扩展性和高可用性:MaxCompute 具有很强的扩展性,可以根据需要动态扩展计算资源。此外,它具有高可用性设计,确保服务的稳定运行。
-
多语言支持:MaxCompute 支持多种编程语言,如 SQL 、Python 、Java 等,方便用户编写数据处理和分析任务
三、问答
看了一段时间官方文档之后,常见的SQL问题以及优化示例_云原生大数据计算服务 MaxCompute(MaxCompute)-阿里云帮助中心作者有很多疑问
1、长尾问题是什么?
一般来说数据分布中存在少量出现频率非常高的“热点”数据,而同时也有大量出现频率低但多样性高的“长尾”数据
但是MaxCompute将Fuxi Instance 耗费时长高于平均值 2倍的实例判定为长尾
也就是将任务分配和执行的引擎实例时间执行过长的认为长尾
比如这个sql他就举例说会引起长尾问题
SELECT shop_id,sum(is_open) AS 营业天数 FROM table_xxx_diWHERE dt BETWEEN 'bizdate365′AND′bizdate365′AND′{bizdate}'GROUP BY shop_id;
按照社区请教了一些朋友,这种可能是数据倾斜造成,比如一些 shop_id
的数据量远大于其他 shop_id
,GROUP BY shop_id的处理时间会明显超过平均值,从而导致长尾现象
解决方案一般是
-
数据预处理和分区调整:
尝试在数据写入阶段使用均匀分布的分区键,如果可能,重新设计数据模型以减轻倾斜。 -
计算逻辑优化:
- 将复杂计算在 ETL 阶段提前处理或者分解为多个合理的小任务。
- 使用窗口函数或其他优化 SQL 技术来减少不必要的数据重计算。
这些说起来都比较笼统,作者对于这个长尾还是有一些模糊
比如数据是
transaction_id | user_id | item_id | amount | category_id |
---|---|---|---|---|
1 | 1001 | 501 | 100 | 10 |
2 | 1002 | 502 | 150 | 10 |
3 | 1003 | 503 | 200 | 20 |
... | ... | ... | ... | ... |
99999 | 1001 | 504 | 100 | 10 |
sql查询是
SELECT user_id, COUNT(*) AS transaction_count
FROM transactions
GROUP BY user_id
ORDER BY transaction_count DESC;
这样会因为user_id
1001 存在大量记录(数据倾斜),导致数据在计算节点上分布不均。部分计算节点会因为数据量过大而成为瓶颈,其他节点却几乎无事可做。这会拖慢整个查询的执行时