大数据(一)MaxCompute

一、引言

        作者后面会使用MaxCompute,所以在进行学习研究,总会有一些疑问产生,这里讲讲作者的疑问和思路

二、介绍

MaxCompute(原名 ODPS - Open Data Processing Service)是阿里云提供的大数据处理平台,专门用于批量数据存储和大规模并行计算。它广泛应用于数据分析和处理任务,为企业级数据处理提供高效的解决方案。

下面是 MaxCompute 的一些主要功能和应用场景:

  1. 大规模数据存储:MaxCompute 提供高效的数据存储解决方案,可以存储 PB 级别的数据,支持结构化和半结构化数据。它的存储系统具有高可用性和高可靠性。

  2. 大数据计算引擎:MaxCompute 提供了强大的计算能力,能够处理大规模数据集。它支持 SQL 、MapReduce 、Graph 和 UDF(用户自定义函数)等多种计算模型,为复杂数据分析提供支持。

  3. 高效的资源管理:MaxCompute 通过资源组、任务队列等资源管理机制,能够实现资源的高效调度和利用,确保计算任务的高效进行。

  4. 安全和权限管理:MaxCompute 提供了完善的安全机制,包括数据访问权限控制、数据加密等,确保数据的安全性。

  5. 数据处理和分析:适用于多种数据处理和分析任务,包括数据清洗、预处理、数据挖掘、统计分析等。它可以与阿里云其他大数据产品(如 DataWorks 、AnalyticDB)集成,形成完整的大数据解决方案。

  6. 扩展性和高可用性:MaxCompute 具有很强的扩展性,可以根据需要动态扩展计算资源。此外,它具有高可用性设计,确保服务的稳定运行。

  7. 多语言支持:MaxCompute 支持多种编程语言,如 SQL 、Python 、Java 等,方便用户编写数据处理和分析任务

三、问答

看了一段时间官方文档之后,常见的SQL问题以及优化示例_云原生大数据计算服务 MaxCompute(MaxCompute)-阿里云帮助中心作者有很多疑问

 1、长尾问题是什么?

一般来说数据分布中存在少量出现频率非常高的“热点”数据,而同时也有大量出现频率低但多样性高的“长尾”数据

但是MaxCompute将Fuxi Instance 耗费时长高于平均值 2倍的实例判定为长尾

也就是将任务分配和执行的引擎实例时间执行过长的认为长尾

比如这个sql他就举例说会引起长尾问题

SELECT shop_id,sum(is_open) AS 营业天数 FROM table_xxx_diWHERE dt BETWEEN 'bizdate365′AND′bizdate3​65′AND′{bizdate}'GROUP BY shop_id;

按照社区请教了一些朋友,这种可能是数据倾斜造成,比如一些 shop_id 的数据量远大于其他 shop_id,GROUP BY shop_id的处理时间会明显超过平均值,从而导致长尾现象

解决方案一般是

  1. 数据预处理和分区调整

    尝试在数据写入阶段使用均匀分布的分区键,如果可能,重新设计数据模型以减轻倾斜。
  2. 计算逻辑优化

    • 将复杂计算在 ETL 阶段提前处理或者分解为多个合理的小任务。
    • 使用窗口函数或其他优化 SQL 技术来减少不必要的数据重计算。

这些说起来都比较笼统,作者对于这个长尾还是有一些模糊

比如数据是

transaction_id user_id item_id amount category_id
1 1001 501 100 10
2 1002 502 150 10
3 1003 503 200 20
... ... ... ... ...
99999 1001 504 100 10

sql查询是

SELECT user_id, COUNT(*) AS transaction_count
FROM transactions
GROUP BY user_id
ORDER BY transaction_count DESC;

这样会因为user_id 1001 存在大量记录(数据倾斜),导致数据在计算节点上分布不均。部分计算节点会因为数据量过大而成为瓶颈,其他节点却几乎无事可做。这会拖慢整个查询的执行时

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

胖当当技术

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值