量子计算(2)科学背景2:量子力学基本理论(下)

本文深入介绍了线性代数的基础知识,包括向量空间的基和线性无关性,以及矩阵的转置、共轭和伴随的概念。通过实例解释了如何判断向量集是否线性相关,并探讨了线性算子、恒等算子和零算子。此外,详细阐述了转置、共轭和伴随矩阵的定义和性质,并给出了厄尔米特矩阵和酉矩阵的特性。
摘要由CSDN通过智能技术生成

目录

一、引言

二、线性代数

1、基和线性无关性

2、转置、共轭和伴随矩阵

①线性算子

②转置

③共轭

④伴随


一、引言

        从上一篇文章中,我们发现量子力学的学习不能没有数学,就像西方不能没有耶路撒冷。牢固掌握基本线性代数知识是理解好量子力学的基础。不过小编建议,不大了解量子力学的读者可以先学习后边的内容,等到有一些公式和数学符号看不懂的时候,再来看看这篇文章的数学理论知识,借助这部分知识再继续学习。

        线性代数研究线性空间及其上的线性算子,它的基本概念是向量空间,我们最感兴趣的向量空间是所有n元复数组成的向量空间\mathbb{C}^{n}。本篇文章我们将学习线性代数的一些基本概念。

二、线性代数

1、基和线性无关性

        向量空间的生成集是向量集|v_{1}>、|v_{2}>······|v_{n}>,则该向量空间中的任意一个向量|v>都可以写成该向量集中向量的线性组合||v>=\sum_{i=1}^{n}a_{i}|\, v_{i}>

        例如,向量空间\mathbb{C}^{2}的生成集是|v_{1}>=(1,0)^{T};|v_{2}>=(0,1)^{T},由于向量空间\mathbb{C}^{2}中的任意向量|v>=(a,b)^{T}都可以写成向量|v_{1}>、|v_{2}>的线性组合|v>=a|v_{1}>+b|v_{2}>,所以我们说向量|v_{1}>、|v_{2}>张成了向量空间\mathbb{C}^{2}

        一般的,一个向量空间可以有不同的生成集。例如向量空间\mathbb{C}^{2}的生成集还可以为|v_{3}>=\frac{1}{\sqrt{2}}\begin{pmatrix} 1\\ 1 \end{pmatrix}|v_{4}>=\frac{1}{\sqrt{2}}\begin{pmatrix} 1\\ -1 \end{pmatrix}。它们也能表示出任意的二维列向量。大家可以自己验证一下它们如何唯一的表示出|v>=(a,b)^{T}

        对于非零向量集|v_{1}>、|v_{2}>······|v_{n}>,若存在一个复数集合a1,a2,·······an,其中至少一个a_{i}\neq 0,使得a_{1}|v_{1}>+a_{2}|v_{2}>+\cdot \cdot \cdot \cdot a_{n}|v_{n}>=0,则称其是线性无关的,否则是线性相关的。这种集合为向量空间V的一组基。基中的元素个数称为向量空间的维数。

        为了方便大家理解,读者们可以做一个小题目练练手。

证明:(1,-1),(1,2),(2,1)是线性相关的。

2、转置、共轭和伴随矩阵

①线性算子

        向量空间V和W之间的线性算子, 定义为对输入具有线性性质的映射A:V\rightarrowW:A(\sum_{i=1}^{n}a_{i}|\, v_{i}>)=\sum_{i=1}^{n}a_{i}A|\, v_{i}>,当我们说定义在线性空间V上的线性算子A时,意味着A是一个从V到W的线性算子。

        在任意的向量空间V上,一个重要的线性算子是恒等算子I_{V},定义为I_{V}(|v>)=|v>。就好比现在的国足一样,无论怎么努力,就是进不了世界杯,永恒不变。

        另一个比较重要的算子是零算子,用0表示,零算子能把所有的向量都映射为零向量,就像一个黑洞一样,能把靠近它的算子吸入黑洞,变成黑洞的一部分。

        请大家求出此题:假设V是一个向量空间,基向量是|0>和|1>。线性算子A是从V到V的线性算子,使得A|0>=|1>,A|1>=|0>,请求出线性算子A。

②转置

      设A\in \mathbb{C}^{m\times n},即m×n阶矩阵(即m行n列),并且它的第i 行j 列的元素是a(i,j),即:A=a(i,j)

        定义A的转置为:存在一个n×m阶矩阵B,满足B=a(j,i),即 b (i,j)=a (j,i)(B的第i行第j列元素是A的第j行第i列元素),记A^{T}=B。

        直观来看,将A的所有元素绕着一条从第1行第1列元素出发的右下方45度的射线作镜面反转,即得到A的转置。即A^{T}(j,k)=A(k,j)。

        它具有下列性质:

        ①(A^{T})^{T}=A(幂等性)

        ②(A+B)^{T}=A^{T}+B^{T}(和的转置等于转置的和)

        ③(c\cdot A)^{T}=c\cdot A^{T}  (系数提出)

③共轭

       

        设A\in \mathbb{C}^{m\times n},即m×n阶矩阵(即m行n列),并且它的第i 行j 列的元素是a(i,j),即:A=a(i,j)

        定义A的共轭为:存在一个m×n阶矩阵B,满足B的第i行第j列元素是A的第i行第j列元素的共轭,记\overline{A}=B。

        直观来看,将A的所有元素的虚数部分求相反数,即\overline{A}(j,k)=A(j,k)。

        它具有下列性质:

        ①\overline{\overline{A}}=A(幂等性)

        ②{\overline{A+B}=\overline{A}+\overline{B}(和的共轭等于共轭的和)

        ③\overline{c\cdot A}=\overline{c}\cdot \overline{A}(系数共轭处理后可以提出)

④伴随

        可以把伴随想象成转置与共轭的结合。

        设A\in \mathbb{C}^{m\times n},即m×n阶矩阵(即m行n列),并且它的第i 行j 列的元素是a(i,j),即:A=a(i,j)

        定义A的伴随为:存在一个n×m阶矩阵B,满足B=\overline{a(j,i)},即 b (i,j)=\overline{a(j,i)}(B的第i行第j列元素是A的第j行第i列元素的共轭),记A^{\dagger}=B。

        直观来看,将A的所有元素绕着一条从第1行第1列元素出发的右下方45度的射线作镜面反转,即得到A的转置。即A^{\dagger}(j,k)=\overline{A(k,j)}。例如我们有:\begin{pmatrix} 1+3i &2i \\ 1+i & 1-4i \end{pmatrix}^{\dagger }=\begin{pmatrix} 1-3i &1-i \\ -2i &1+4i \end{pmatrix}

        它具有下列性质:

        ①(A^{\dagger} )^{\dagger} =A(幂等性)

        ②(A+B)^{\dagger} =A^{\dagger} +B^{\dagger}(和的伴随等于伴随的和)

        ③(c\cdot A)^{\dagger }=\overline{c}\cdot A^{\dagger }(系数共轭后可以提出)

        请大家自行证明这些性质加强理解!

        其中,伴随引出的最重要的两个矩阵之一是厄尔米特矩阵,它满足A^{\dagger }=A(该矩阵的伴随仍然是自己),比如说,下面这个矩阵就是一个标准的厄尔米特矩阵。

        

        另一重要矩阵是酉矩阵,它满足A\cdot A^{\dagger }=I_{n},In为单位阵。比如说,对任意的θ,下面这个矩阵仍然是酉矩阵。利用三角函数基本性质可以很容易的证明出来。

        好了,本期的量子计算先导课程就到这里了,如果后面还有一些量子计算相关的知识,小编会在这篇文章继续补充的,感谢您的关注!

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计算机鬼才~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值