量子计算(4)基础知识2:量子逻辑门(中)

目录

一、单量子比特逻辑门(下)

 1、旋转门

①RX门

②RY门

③RZ门

④R(θ)门

2、S门与T门

二、多量子比特逻辑门

1、张量积

2、受控操作

①受控非门      

 ②受控Z门与例题        

 ③ 受控U操作


一、单量子比特逻辑门(下)

 1、旋转门

       旋转门有三种形式,即RX门、RY门以及RZ门。在正式学习旋转门之前,我们需要证明一下下面这个式子:

        令x为一实数,A为满足A^{2}=I的矩阵,则exp(iAx)=cos(x)I+isin(x)A

证明:首先我们要了解sinx、cosx以及exp(x)的泰勒展开式分别为

        e^{x}=1+x+\frac{ x^{2}}{2!}+\cdot \cdot \cdot +\frac{x^{n}}{n!}+Rn(x)

        cosx=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdot \cdot \cdot (-1)^{k}\cdot \frac{x^{2k-1}}{(2k-1)!}+Rn(x)

        sinx=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdot \cdot \cdot (-1)^{k}\cdot \frac{x^{2k}}{(2k)!}+Rn(x)

        对于指数的泰勒表达式,只需要把x替换为iAx就行了,也就是说下面这个式子成立:

        e^{iAx}=1+iAx+\frac{ (ixA)^{2}}{2!}+\cdot \cdot \cdot +\frac{(ixA)^{n}}{n!}+Rn(x),又根据已知条件A^{2}=I,以及虚数的特点i^{2}=-1对该式子进行化简有:

        e^{iAx}=I+iAx-\frac{x^{2}\cdot I}{2!}-\frac{x^{3}\cdot A}{3!}+\frac{x^{4}\cdot I}{2!}\cdot \cdot \cdot +\frac{(ixA)^{n}}{n!}+Rn(x)

        再算出泰勒展开后的右式cos(x)I+isin(x)A是否等于左式,即可证明出该式子成立!

①RX门

        如果能沿着X轴旋转角度π,我们自然也希望旋转指定的逆时针角度θ。RX门由X矩阵作为生成元生成,其矩阵形式比较复杂,为        

        RX(\theta )=e^{ \frac{-i\theta X}{2}}=cos(\frac{\theta }{2})I-isin(\frac{\theta }{2})X=\begin{pmatrix} cos(\frac{\theta }{2})&-isin(\frac{\theta }{2}) \\ -isin(\frac{\theta }{2}) & cos(\frac{\theta }{2}) \end{pmatrix}

        为什么为θ/2,这是因为布洛赫球的参数为θ/2,而不是θ,不理解的读者可以参考一下小编上一篇文章。

②RY门

        同理,沿Y轴旋转θ构成了RY门,RY门由Y矩阵作为生成元,它的矩阵为

        RY(\theta )=e^{ \frac{-i\theta Y}{2}}=cos(\frac{\theta }{2})I-isin(\frac{\theta }{2})Y=\begin{pmatrix} cos(\frac{\theta }{2})&-sin(\frac{\theta }{2}) \\ -sin(\frac{\theta }{2}) & cos(\frac{\theta }{2}) \end{pmatrix}

        感兴趣的读者也可以自己验算一下下面这个式子:

        证明XYX=-Y,并以此证明XR_{y}(\theta )X=R_{y}(-\theta )

③RZ门

        RZ门又称为相位转化门,它化简出来的结果是RZ(\theta )=\begin{pmatrix} e^{\frac{-i\theta }{2}} & 0\\ 0 & e^{\frac{i\theta }{2}} \end{pmatrix}。我们研究它的作用效果会发现,它并没有对计算基|0>和|1>做出改变,而是在原来的态上绕Z轴旋转θ角。

        RZ|0>=\begin{pmatrix} 1 &0 \\ 0 & e^{i\theta } \end{pmatrix}\cdot \begin{pmatrix} 1\\0 \end{pmatrix}=\begin{pmatrix} 1\\ 0 \end{pmatrix}=|0>

        RZ|1>=\begin{pmatrix} 1 &0 \\ 0 & e^{i\theta } \end{pmatrix}\cdot \begin{pmatrix} 0\\1 \end{pmatrix}=e^{i\theta } \begin{pmatrix} 0\\ 1 \end{pmatrix}=e^{i\theta } |1>

        也就是说,不论使用RZ门的参数调整为多少,都不会影响测量的概率!

④R(θ)门

        若\widehat{n}=(n_{x}n_{y}n_{z})是三维空间中的一实单位向量,那么我们通过定义一关于\widehat{n}轴转角θ的旋转来推广上述定义,形式如下:

        R_{\widehat{n}}(\theta )=e^{ \frac{-i\theta \widehat{n}\cdot \sigma }{2}}=cos(\frac{\theta }{2})I-isin(\frac{\theta }{2})(n_{x}X+n_{y}Y+n_{z}Z),其中\sigma指的是由泡利矩阵组成的三元向量(X,Y,Z)

2、S门与T门

        S门也称为相位门,T门也称为π/8门,这两个门相较于前面学习的几个单量子比特门来说,并不是那么重要,但是我们也需要了解一下它们的矩阵形式。

        S=\begin{pmatrix} 1 &0 \\ 0& i \end{pmatrix}T=\begin{pmatrix} 1 &0 \\ 0& e^{i\pi /4} \end{pmatrix}

        容易发现S=T^{2},HTH=R_{X}(\frac{\pi }{4}),这对我们化简电路有帮助。

二、多量子比特逻辑门

1、张量积

        张量积是将向量空间符合在一起形成一个更大的向量空间的方法,这个构造对于理解量子力学中多粒子系统至关重要。

        设V和W分别是m维和n维的向量空间,那么V\otimesW(读作V张量W)是一个mn维的向量空间。V\otimesW里的元素是V空间中的元素|v>和W空间中的元素|w>的线性组合。特别注意,如果|i>和|j>是空间V和W中的标准正交基,那么|i>\otimes|j>是V\otimesW的一组基。我们通常省略中间的符号,将张量写作|vw>、|v,w>或者|v>|w>。

        那么,它该怎么计算呢?假设A是一个m×n的矩阵,B是一个p×q的矩阵,则有矩阵表示:

        A\otimes B=\begin{pmatrix} A_{11} B& A_{12}B&\cdot \cdot \cdot & A_{1n}B\\ A_{21}B & A_{22}B& \cdot \cdot \cdot & A_{2n}B\\ \cdot \cdot \cdot & & & \cdot \cdot \cdot \\ A_{m1}B& A_{m2}B&\cdot \cdot \cdot &A_{mn}B \end{pmatrix}

         比如说(1,2)与(3,4)的张量积为(1×3,1×4,2×3,2×4),化简一下为(3,4,6,8,)。

        最后,我们提一下一个比较有用的记号|\psi >^{\otimes k},它表示|\psi>与自身的k次张量积。

2、受控操作

①受控非门      

        生活中我们总是说“如果怎么怎么样,就会怎么怎么样”,这种操作我们称之为条件语句,比如说“如果伍老师完成了作业,我就带她打游戏上分”,“如果华强买瓜,那么瓜老板就会被华强砍”等等。这种一个事件受另一个事件调控的操作,我们称为受控操作。

        这种受控操作在经典计算和量子计算中都是最有用的操作之一,思考一下,我们经常提到的受控非门就是一个具有两个输入量子比特的量子门,分别称为控制量子比特和目标量子比特,其作用可由|c>|t >\rightarrow|c>|t\oplusc>给出。也就是说,如果控制比特为|1>,则目标比特翻转,否则目标比特不变。因此,我们可以把它写成|控制,目标>。

         如上图,上面的为目标比特,下面的连线为控制比特。并且上面的为低位比特,下面的为高位比特。所以如果我们看到|10>,代表着下面这根线为|1>,上面这根线为|0>。我们可以自己计算一下,CNOT门对应的矩阵A为多少。已知A|00>=|00>; A|01>=|01>; A|10>=|11>;A|11>=|10>。求得受控非门也就是CNOT门对应的矩阵为:    \begin{pmatrix} 1&0 &0 &0 \\ 0& 1& 0& 0\\ 0& 0& 0&1 \\ 0&0 & 1&0 \end{pmatrix}

        如果选择低位为控制比特,高位为目标比特,那么低比特位置为0时,不对高比特位做任何操作,低比特为1时,高比特取反。此时的CNOT门矩阵将会变为\begin{pmatrix} 1&0 &0 &0 \\ 0& 0& 0& 1\\ 0& 0& 1&0 \\ 0&1 & 0&0 \end{pmatrix}

 ②受控Z门与例题        

        请读者们由受控Z门构建受控非门,即使用一个在计算基上如下方酉矩阵表示的门和两个阿达马门构建,并让低位为控制位,高位为目标位。受控Z门矩阵:\begin{pmatrix} 1 & 0& 0& 0\\ 0& 1& 0&0 \\ 0& 0&1 & 0\\ 0&0 & 0&-1 \end{pmatrix}

        这一题有点不好思考,不过我们可以先计算受控Z门的不同输入下的不同输出,再来一步步思考接下来的过程。

        

输入

输出

|00>

|00>

|01>

|01>

|10>

|10>

|11>

-|11>

        也就是说控制比特为|1>,目标比特为|1>时才起作用。

        然后我们发现,如果使用两个H门,首先不能将这两个H放到一起,因为H^{2}=I,会变成一个单位矩阵,也就是说用了等于没用。

        

        那么它的样子大概是这样(图中的4个H门任意取两个,一共6种可能性):

         特别注意,受控Z门的目标比特为含有CZ的这一条路,控制比特为含有点点的这一条路!小编一开始也搞错了,走了很多弯路!

情况一:

         下方的|0>经过H门后会变成|0>与|1>的叠加态,并且就算如此控制比特仍然为|0>,也就是说这个Z门不起任何作用,和一个摆设一样。所以我们选择先添加一个X门,看看控制比特为|1>时的情况。很不幸,由于两个H门的存在,使得最后存在了四种状态,我们直接舍弃!

情况二:

         依然是与情况一相类似的问题,虽然控制比特有一部分是|1>态,但是目标比特始终为|0>,不给控制比特改变自己的机会,所以得到的最终结果。并且有一个最大的问题是,如果按照这么计算下去,你会发现最终结果|00>,|01>,|10>,|11>都存在,这一看就很不合理!

情况三与情况四:两个H门均在左边/两个H门均在右边

        这两种情况最终得到的结果含有四种状态,不合理,略。

情况五:

         会发现这种状态最后只会有一种状态,终于符合受控非门的情况了!让我们验算一下,当控制比特为|0>时,受控Z门不起任何作用。也就是说|00>\rightarrow|00>;|10>\rightarrow|10>。

        当控制比特为|1>时,受控Z门将目标比特的|1>变为-|1>,也就是说|0>经过H门和这个起作用的受控Z门后会变成|->态,|1>经过这个H门和起作用的受控Z门后会变成|+>态。|->态最后乘上一个H门,会变成|1>,|+>态经过一个H门会变成|0>态。也就是说|01>\rightarrow|11>;|11>\rightarrow|01>。

        这不就是低比特为控制位的CNOT门吗?

情况六:

        当控制比特为|0>时,经过H门后,有|0>态有|1>态,当目标比特为|0>时,啥都不会发生,怎么进去的怎么出来,并且低位线上两个H门相乘为单位矩阵,自身不影响,会变成原先的状态。也就是说|00>\rightarrow|00>,|10>\rightarrow|10>,符合低比特为控制位的CNOT门。当目标比特为|1>时,会让部分|1>变为-|1>,并且最后这部分负号根本消除不掉,舍弃!


 ③ 受控U操作

        如果想要接下来的学习比较顺利,请大家试着自己证明一下以下结论:

        设U是作用在单良子比特上的一个酉门,则单量子比特上存在酉算子A,B,C使得ABC=I且U=e^{i\alpha }AXBXC,其中\alpha为某个全局相位因子。


        更一般地,设U是任意单量子比特酉操作,则受控U操作是两量子比特操作,一个控制比特和一个目标比特,若控制量子比特被置为一定值则U作用于目标比特上,否则目标比特不变,即 |c>|t>\rightarrow|c>U^{C}|t>。
        小编将会在下一篇文章中讲解这道证明题,请读者们敬请期待!

        如果您觉得小编的文章对您有所帮助,请您点个赞再走吧!谢谢!

  • 8
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论
启量科技是一家专注于量子计算领域的公司,其团队致力于量子计算的研究与应用。量子计算是一种利用量子力学原理进行数据处理的新型计算方式。与传统的经典计算相比,量子计算具有更高的计算速度和更大的计算容量。 量子计算基础量子比特(qubit),它是量子计算的最小存储单元,可以同时具有0和1两种状态。与经典计算的比特(bit)不同,量子比特可以利用量子叠加和量子纠缠等特性进行并行计算,极大地提高了计算效率。量子比特的稳定性和可控性是量子计算发展的关键挑战,目前研究人员正在寻找不同的物理实现方式和量子纠错技术来解决这些问题。 量子计算的发展趋势主要集在以下几个方向: 1. 技术突破:随着量子计算的发展,研究人员不断提出新的量子计算模型和算法。例如,量子模拟能够模拟复杂的量子系统,量子机器学习能够提高学习和分类的效率等。研究人员还致力于寻找新的量子算法和量子优化方法,以解决实际应用的复杂问题。 2. 量子通信与网络:量子通信是另一个重要的发展方向。量子通信可以利用量子纠缠的特性实现安全的通信,保护信息的传输过程免受窃听和干扰。研究人员正在研究量子密钥分发、量子隐形传态等量子通信协议。 3. 商业化应用:量子计算的商业化应用是当前的热点。一些公司开始研发商用量子计算机,并将其应用于金融、材料科学、药物设计等领域。随着硬件技术的进步和成本的降低,量子计算在各个领域的应用将会逐渐增多。 总之,量子计算是一项前沿而具有巨大潜力的技术。启量科技作为这一领域的重要参与者,将继续推动量子计算的发展,并应用于解决实际问题,促进科学技术的进步。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计算机鬼才~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值