量子计算(3)基础知识1:量子逻辑门(上)

目录

一、前言        

 1、引言

2、Bloch球

3、pyqpanda的安装

二、单量子比特逻辑门

1、自旋矩阵

 ①X门

 ②Y门

③Z门

2、H门


一、前言        

 1、引言

        在经典计算机中,最基本的单元是比特,而最基本的控制单元则是逻辑门(比如说与门、或门、非门等等),可以通过逻辑门的组合控制整个电路。类似的,在量子计算中,最基本的单元是量子比特,而处理量子比特的方式叫做量子逻辑门。但是量子逻辑门与经典逻辑门也是有区别的,量子逻辑门是可逆的,所有的量子逻辑门运算都是一种酉运算。使用量子逻辑门,有意识的使量子态发生演化,达到自己想要的结果。所以,量子逻辑门是构成量子算法的基础,并且这些量子逻辑门由矩阵构成。设计好一个优秀的量子计算线路图有助于我们完成量子计算的任务。如下图就是一个简易的量子计算线路图,其中q[0]、q[1]可以理解为寄存器,|0>是量子的初状态。H、S、Z是量子门,CR是受控量子门而最后的这个红色框框的作用是测量。

        所以说,学明白量子逻辑门对我们设计线路图及其关键。这篇文章中,我们将学习多种多样的量子逻辑门。

2、Bloch球

        为了更加直观的感受我们今天讲解的逻辑门的作用,我们引入了布洛赫球(Bloch球),它能够方便的表述一个量子比特的任意状态。如果量子态是一个纯态,那么它是球面上的一点。点的z坐标衡量了它是|0>与它是|1>的概率。即P(|0>)=\frac{1+z}{2},P(|1>)=\frac{1-z}{2}。球的z正半轴代表|0>,负半轴代表|1>。

        平行与XoY平面对这个球作截面,所得到的这个圆象征的相位的复平面。如下图所示,\phi为单位复数的幅角。经过这个过程,可以使球上的每个点与纯态联系起来。

        相信很多读者们不了解为什么这个球能表述一个量子比特的任意状态,我们给出推理过程:首先我们要知道任意一个量子比特|x>可以写成|x>=a|0>+b|1>,而我们知道|a|^{2}+|b|^{2}=1。且a与b均为复数形式,均可以写成q+pi的形式,也可以根据欧拉公式(即e^{i\theta }=cos\theta +isin\theta,一个复数可以写作是指数形式)把a和b写作r\cdot e^{i\phi }的形式。如,我们把a写成r_{1}\cdot e^{i\phi_{1} },b写成r_{2}\cdot e^{i\phi_{2} }

        而根据|a|^{2}+|b|^{2}=1(模的平方和为1),我们可以求得r_{1}^{2}+r_{2}^{2}=1。平方和为1我们又容易想到圆的参数方程,即r_{1}=cos\thetar_{2}=sin\theta,这样能减少参数的数量,即将r_{1}r_{2}用一个\theta所代替。同时,我们希望式子更为简便,能不能把两个\psi用一个\psi来代替呢?答案是我们可以通过同除来“消灭”一个参数,所以有e^{-i\psi _{1}}|x>=r_{1}|0>+r_{2}e^{i(\psi _{2}-\psi _{1})}|1>,因为e^{-i\psi _{1}}这一部分模的平方为1,也就是说量子的物理状态不会改变,所以我们可以依据这个特性再次消除掉一个参数。由此得到的含有\theta\psi两个参数的方程,它的几何意义就是一个球。并且a=cos\thetab=e^{i\psi} sin\theta

        那么我们定义\theta =0时量子态指向z正半轴,\theta =\frac{\pi }{2},\psi =0时量子态指向x正半轴,垂直于XoZ平面且过球心的为y轴。经过计算,z正半轴为|0>态,z负半轴为-|0>态,完全不符合上面这个Bloch球呀,是不是定义这个球的人弄错了?

        答案是我们为了能让z正半轴满足为|0>态,z负半轴为|1>态,所以把θ换成了2分之θ。这样子能让|0>的对立面就是|1>,看起来更加直观。a与b相应的修改为a=cos\frac{\theta}{2}b=b=e^{i\psi} sin\frac{\theta }{2}

        则x正半轴表示为\frac{1}{\sqrt{2}}\cdot (|0>+|1>),负半轴表示为\frac{1}{\sqrt{2}}\cdot (|0>-|1>);y正半轴表示为\frac{1}{\sqrt{2}}\cdot (|0>+i|1>),负半轴表示为\frac{1}{\sqrt{2}}\cdot (|0>-i|1>)。这就是布洛赫球的全部几何信息。

3、pyqpanda的安装

        量子计算编程的主要库是pyqpanda(python语言环境下)以及Qpanda2(C++语言环境下)。不过小编更喜欢用python,所以这里说明一下python中的pyqpanda安装的相关问题以及解决方案。

        首先,小编第一次用pycharm安装pyqpanda就报错了。报错的结果如下图:

         然后小编想着是不是因为网速问题没有下载下来,于是小编选择在终端进行下载,并且直接开了一个热点,外加换了一个源,但结果还是不尽如人意。换源指令如下:

pip install pyqpanda -i https://pypi.tuna.tsinghua.edu.cn/simple

       ​​​​​

         后来我在网上搜索解决方案,得出的结论是:小编的python版本太高了,已经在3.10了。而pyqpanda只能在版本3.6-3.9的python环境中下载下来。找到问题的关键,解决思路不就清晰了。于是小编重新下载了一个低版本的python,然后就很顺利的用下述命令下载下来了!!

pip install pyqpanda

        然后新建一个项目,输入下述代码,看看能否运行:

import pyqpanda as pq

if __name__ == "__main__":
    # 初始化量子虚拟机
    machine = pq.init_quantum_machine(pq.QMachineType.CPU)
    qubits = pq.qAlloc_many(3)
    cbits = pq.cAlloc_many(2)
    cbits[0].set_val(0)
    cbits[1].set_val(1)
    prog = pq.QProg()
    branch_true = pq.QProg()
    branch_false = pq.QProg()

    # 构建QIf正确分支以及错误分支
    branch_true.insert(pq.H(qubits[0])) \
        .insert(pq.H(qubits[1])) \
        .insert(pq.H(qubits[2]))
    branch_false.insert(pq.H(qubits[0]))

    # 构建QIf
    qif = pq.create_if_prog(cbits[0] > cbits[1], branch_true, branch_false)

    # QIf插入到量子程序中
    prog.insert(qif)

    # 概率测量
    result = pq.prob_run_dict(prog, qubits, -1)

    # 打印概率测量结果
    print(result)

    pq.destroy_quantum_machine(machine)

二、单量子比特逻辑门

1、自旋矩阵

       自旋矩阵有时也被称为泡利矩阵,有三种形式,分别称为X门、Y门以及Z门。

 ①X门

        它之所以称之为X门,主要原因是它的作用效果相当于量子态绕Bloch球的x轴旋转π。我们不难发现,X门的作用是将|0>转换为|1>,将|1>转换为|0>与非门相对应。因此我们可以推理出对应的矩阵完成这一行为。

        经过计算,对于X门,它的泡利运算矩阵为\hat{\sigma _{x}}=\begin{pmatrix} 0 &1 \\ 1& 0 \end{pmatrix}。按照我们的数学基础,我们很容易验证这一矩阵能否完成绕x轴旋转π的任务:

        \hat{\sigma _{x}}|0>=\begin{pmatrix} 0 & 1\\ 1& 0 \end{pmatrix}\cdot\begin{pmatrix} 1\\ 0 \end{pmatrix}=\begin{pmatrix} 0\\ 1 \end{pmatrix}=|1>

        \hat{\sigma _{x}}|1>=\begin{pmatrix} 0 & 1\\ 1& 0 \end{pmatrix}\cdot \begin{pmatrix} 0\\ 1 \end{pmatrix}=\begin{pmatrix} 1\\ 0 \end{pmatrix}=|0>

        X门作用于叠加态的结果是:\hat{\sigma _{x}}(\alpha |\, 0>+\beta |\, 1>)=\alpha |\, 1>+\beta |\, 0>

       

 ②Y门

        与X门的命名规则类似,之所以称为Y门,是因为它的作用效果相当于量子态绕Bloch球的y轴旋转了π。它的矩阵形式为\hat{\sigma _{y}}=\begin{pmatrix} 0 &-i \\ i & 0 \end{pmatrix}。其分别作用于|0>与|1>的效果为:

        \hat{\sigma _{y}}|0>=\begin{pmatrix} 0 &-i \\ i & 0 \end{pmatrix}\cdot \begin{pmatrix} 1\\ 0 \end{pmatrix}=i\cdot \begin{pmatrix} 0\\ 1 \end{pmatrix}=i\cdot |1>

        \hat{\sigma _{y}}|1>=\begin{pmatrix} 0 & -i\\ i& 0 \end{pmatrix}\cdot \begin{pmatrix} 0\\ 1 \end{pmatrix}=-i\cdot \begin{pmatrix} 1\\ 0 \end{pmatrix}=-i\cdot |0>

        Y门作用于叠加态的结果是:\hat{\sigma _{y}}(\alpha |0>+\beta |1>)=i\alpha |\, 1>-i\beta |\, 0>

③Z门

        同理,它的作用效果相当于量子态绕Bloch球的z轴旋转了π。矩阵形式为\hat{\sigma _{z}}=\begin{pmatrix} 1 &0 \\ 0&-1 \end{pmatrix}。我们仍然研究其作用于|0>与|1>的效果。

        \hat{\sigma _{z}}|0>=\begin{pmatrix} 1 &0 \\ 0&-1 \end{pmatrix}\cdot \begin{pmatrix} 1\\ 0 \end{pmatrix}=\begin{pmatrix} 1\\ 0 \end{pmatrix}=|0>

        \hat{\sigma _{z}}|1>=\begin{pmatrix} 1 &0 \\ 0& -1 \end{pmatrix}\cdot \begin{pmatrix} 0\\ 1 \end{pmatrix}=-\begin{pmatrix} 0\\ 1 \end{pmatrix}=-|1>

        Z门作用于叠加态的结果是:\hat{\sigma _{z}}(\alpha |0>+\beta |1>)=\alpha |0>-\beta |1>

2、H门

        Hadamard门简称为H门,也叫阿达马门。它是一种能将基态转变为叠加态的量子门。它的矩阵形式为H=\frac{1}{\sqrt{2}}\begin{pmatrix} 1 &1 \\ 1& -1 \end{pmatrix},相当于\frac{1}{\sqrt{2}}(\hat{\sigma _{x}}+\hat{\sigma _{z}})。也就是说可以用X门以及Z门来制备H门。我们仍然研究它对于|0>以及|1>的作用。

        H|0>=\frac{1}{\sqrt{2}}\begin{pmatrix} 1 &1 \\ 1& -1 \end{pmatrix}\cdot \begin{pmatrix} 1\\ 0 \end{pmatrix}=\frac{1}{\sqrt{2}}\begin{pmatrix} 1\\ 1 \end{pmatrix}=\frac{1}{\sqrt{2}}(|\, 0>|+|\, 1>)

        H|1>=\frac{1}{\sqrt{2}}\begin{pmatrix} 1 &1 \\ 1 &-1 \end{pmatrix}\cdot \begin{pmatrix} 0\\ 1 \end{pmatrix}=\frac{1}{\sqrt{2}}\begin{pmatrix} 1\\ -1 \end{pmatrix}=\frac{1}{\sqrt{2}}(|0>-|1>)

        我们把|1>态经过H门后的状态称为|->态,而|0>态经过H门后的状态称为|+>态。

        运用著名的恒等关系通过检查来化简电路很有好处,证明下面三个恒等关系:HXH=Z,HYH=-Y,HZH=X。(自己带入矩阵验算即可,这里就不做过多的演示了)

        那么,理论知识到这里已经快要结束了,小编将会在后续课程中讲到多量子比特门以及pyqpanda的编程问题,感兴趣的小伙伴可以持续关注小编的文章!

        亲,能给小编点一个免费的赞和收藏吗?下期更精彩哦!

  • 19
    点赞
  • 37
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论
启量科技是一家专注于量子计算领域的公司,其团队致力于量子计算的研究与应用。量子计算是一种利用量子力学原理进行数据处理的新型计算方式。与传统的经典计算相比,量子计算具有更高的计算速度和更大的计算容量。 量子计算的基础是量子比特(qubit),它是量子计算的最小存储单元,可以同时具有0和1两种状态。与经典计算中的比特(bit)不同,量子比特可以利用量子叠加和量子纠缠等特性进行并行计算,极大地提高了计算效率。量子比特的稳定性和可控性是量子计算发展中的关键挑战,目前研究人员正在寻找不同的物理实现方式和量子纠错技术来解决这些问题。 量子计算的发展趋势主要集中在以下几个方向: 1. 技术突破:随着量子计算的发展,研究人员不断提出新的量子计算模型和算法。例如,量子模拟能够模拟复杂的量子系统,量子机器学习能够提高学习和分类的效率等。研究人员还致力于寻找新的量子算法和量子优化方法,以解决实际应用中的复杂问题。 2. 量子通信与网络:量子通信是另一个重要的发展方向。量子通信可以利用量子纠缠的特性实现安全的通信,保护信息的传输过程免受窃听和干扰。研究人员正在研究量子密钥分发、量子隐形传态等量子通信协议。 3. 商业化应用:量子计算的商业化应用是当前的热点。一些公司开始研发商用量子计算机,并将其应用于金融、材料科学、药物设计等领域。随着硬件技术的进步和成本的降低,量子计算在各个领域的应用将会逐渐增多。 总之,量子计算是一项前沿而具有巨大潜力的技术。启量科技作为这一领域的重要参与者,将继续推动量子计算的发展,并应用于解决实际问题,促进科学技术的进步。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计算机鬼才~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值