自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(12)
  • 收藏
  • 关注

原创 在本地浏览器访问服务器上的 TensorBoard

如果用端口号连接,需要将端口号分开,在命令中单独指定端口号。/log是日志文件夹。

2025-04-24 16:42:55 151

原创 安装mmcv时出现的opencv-python与opencv-python-headless兼容问题

如果你打算使用 `opencv-python-headless` 而不是 `opencv-python`,例如在一个很小的容器环境或者没有图形用户界面的服务器中,你可以先安装 `opencv-python-headless`,这样在安装 mmcv 依赖的过程中会跳过 `opencv-python`。按照这样做之后依旧会安装上opencv-python,opencv-python和opencv-python-headless会同时存在,又会出现libGL.so.1的问题,好像是后安装的覆盖了先安装的。

2025-01-16 11:12:46 504

原创 SiLU激活函数

SiLU(Sigmoid-Weighted Linear Unit),也被称为,是一种现代激活函数,结合了线性和非线性特性,由Google的研究人员在2017年提出。定义如下:图像如下:可以看到它在 x>0 时接近线性,而在 x

2024-12-30 11:01:39 1370

原创 IDEA远程连接实现mapreduce编程出现拒绝连接错误

(但其实我不是特别明白为什么显示指定了就成功了,因为8032和8034本来就是yarn.resourcemanager.address和yarn.resourcemanager.scheduler.address的默认端口,不知道为什么一定要显示指定才可以。

2024-05-01 18:47:58 187

原创 启动journalnode没有出现jps进程

当主节点启动journalnode后,从节点使用jps查询没有出现journalnode进程。如果你是hadoop2.x.x,是在。文件指定datanode的位置而不是slaves。但是如果你是hadoop。文件指定datanode的位置;

2024-04-14 00:30:40 748 2

转载 影像算法解析——JPEG 压缩算法

由于视频是由一帧帧图像构成的,研究视频编码首先先要研究图像编码。这篇文章就详细说一下 JPEG 是如何压缩一个图像的。先简单介绍一下 JPEG(ointxpertsroup,联合图像专家小组):此团队创立于1986年,其于1992年发布的 JPEG 标准在1994年获得了 ISO 10918-1 的认定,成为了图片压缩标准。JPEG 压缩为有损压缩,下面介绍一下它的压缩算法。

2023-11-13 11:47:55 1679

原创 算力中心(自用)

2、 安装必要的包(例matplotlib)4、查看conda环境下所有的虚拟环境。1、代码文件拖入MobaXterm。1、申请CPU(数字对应内存)3、执行文件里写的sbatch。1、安装pytorch。

2023-10-19 12:39:49 458

原创 经典网络—ResNet(浅显理解)

以一个神经网络为例,在反向传播的过程中,可以推导出每一层的误差项都依赖于它后面一层的误差项(链式法则)。如此,误差就无传播到底层的参数了,这就是。对于这个问题,实验数据证明,一开始随着模型层数的的增加,模型精度会达到饱和,但是如果再继续增加,它就开始退化了,从上图的实验数据中我们可以看到,在训练轮次相同的的情况下,56层的网络误差居然比20层的网络还要高,这个现象是由于深层网络训练难度太高导致的,我们给这个现象起名叫做。但是,这个方法仅对几十层的网络有用,当网络再往深处走的时候,这种方法就无用武之地了。

2023-09-16 19:05:11 267 1

原创 论文阅读笔记2:基于自适应攻击强度的对抗训练

这是最近发布在《计算机应用》期刊上的一篇论文。对抗训练的基本思想是通过引入对抗样本来提高模型的鲁棒性。一般分为以下步骤:1、生成对抗样本:一般使用投影梯度下降(PGD)生成对抗样本2、训练模型:使用生成的对抗样本和原始样本一起来训练模型。3、重复迭代:重复执行上述两个步骤,生成新的对抗样本和训练模型,以提高模型的鲁棒性。

2023-09-13 21:35:54 2134 1

原创 AI入门 科普视频

给和我一样入门的朋友们推荐一个AI相关的科普up主,主页有很多一两分钟的科普视频,讲得非常清晰明了(只是针对入门朋友们的简单科普,详细的还是得看论文或者讲课视频)。

2023-09-10 16:12:57 290 2

原创 对感受野的理解

在卷积神经网络中,感受野(Receptive Field)的定义是卷积神经网络每一层输出的特征图(feature map)上每个像素点在原始图像上映射的区域大小,这里的原始图像是指网络的输入图像,是经过预处理后的图像。从上图可看到输出中的每个元素都由(3,3)的卷积核对应输入中(3,3)的局部区域“加权求和”得到,所以该输出的特征元素对应到输入中的区域大小就是3×3,既其感受野大小为3×3。

2023-09-10 00:09:24 423 1

原创 论文阅读笔记1:Threat of Adversarial Attacks on Deep Learningin Computer Vision: A Survey

从这个角度出发,他们的方法,称为。

2023-07-22 19:44:59 1391 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除