SiLU激活函数

        SiLU(Sigmoid-Weighted Linear Unit),也被称为 Swish,是一种现代激活函数,结合了线性和非线性特性,由Google的研究人员在2017年提出。定义如下:

图像如下:

        可以看到它在 x>0 时接近线性,而在 x<0 时逐渐趋于 0,表现出平滑且动态的特性。

SiLU 的特点

  1. 平滑性: SiLU 是连续且光滑的,梯度也连续变化,避免了 ReLU 中的不连续点(如 x=0)。

  2. 非对称性: SiLU 在 x>0 时近似线性,而在 x<0 时具有一定的非线性衰减特性。

  3. 可微性: SiLU 的导数始终存在且连续,适合优化问题。

  4. 基于输入大小的动态加权: 通过 x⋅σ(x) 的形式,SiLU 会动态调整激活值的大小。例如:

    • 对大正值输入:σ(x) 接近 1,因此激活值近似 x。
    • 对小负值输入:σ(x) 接近 0,激活值被压缩。

SiLU 的性质

  • 单调性:SiLU 在 x>0 区间单调递增,在 x<0 区间单调递减。
  • 零中心性:激活函数输出不是完全零均值,但在接近零的输入区间提供适度的零中心化。

SiLU 和其他激活函数的比较

这是常见激活函数(SiLU、ReLU、Sigmoid 和 Tanh)的对比图:

  • SiLU (Swish):平滑过渡,x>0 时接近线性,x<0 时逐渐趋于零,兼具线性和非线性特性。
  • ReLU:在 x>0 时输出 x,x<0 时恒为零,简单高效但可能导致神经元“死亡”。
  • Sigmoid:输出范围在 (0, 1),适合概率问题,但存在梯度消失问题。
  • Tanh:输出范围在 (-1, 1),零中心化,适合处理对称数据,但同样存在梯度消失问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值