《Attention is All You Need》 是一篇由 Ashish Vaswani 等人在 2017 年提出的开创性论文,提出了 Transformer 模型,彻底改变了序列到序列(Seq2Seq)任务中处理长距离依赖问题的方式。这篇论文的最大贡献是 完全摒弃了 RNN 和 LSTM,而是采用了基于 注意力机制(Attention Mechanism) 的新架构。
在解读论文时,我们可以按以下几个关键部分来理解:
1. 问题背景和动机
在 论文的开头,作者讨论了传统的序列到序列模型(如 RNN 和 LSTM)的优缺点,指出了使用递归结构进行序列建模的主要问题:
- 训练速度慢:RNN 和 LSTM 是逐步处理输入的模型,因此不能并行计算,训练速度较慢。
- 长距离依赖问题:在长序列中,RNN 和 LSTM 容易遇到梯度消失或梯度爆炸的问题,难以捕获长时间的依赖关系。
为了解决这些问题,作者提出了 Transformer,它完全基于 自注意力机制(Self-Attention),能高效并行处理输入序列,同时捕获长距离的依赖关系。
2. Transformer 架构
2.1 整体架构
Transformer 是由两大部分组成:
- 编码器(Encoder)
- 解码器(Decoder)
每个部分都由多个相同的 层(Layer) 堆叠而成。编码器用于将输入序列转换为一个上下文表示,解码器则根据这个上下文生成目标序列。
每个 编码器层 和 解码器层 都包含两个主要的子层:
- 自注意力层(Self-Attention Layer):该层通过计算每个输入与其他输入之间的相关性(即注意力得分),捕捉长距离的依赖关系。
- 前馈神经网络层(Feed-Forward Neural Network Layer):每个自注意力层后面接一个前馈神经网络,用于进一步的非线性变换。
每个子层都包含 残差连接(Residual Connection) 和 层归一化(Layer Normalization),以帮助加速训练并稳定优化过程。
2.2 自注意力机制(Self-Attention Mechanism)
自注意力机制 是 Transformer 的核心,它使得模型能够在每个位置“自我关注”其他位置的信息,从而捕获长距离依赖关系。具体地,给定输入序列 (X = (x_1, x_2, …, x_n)),每个位置的查询、键和值是通过对输入序列做线性变换得到的。
自注意力机制的计算步骤:
-
计算查询(Query)与键(Key)的相似度,得到 注意力得分(Attention Scores):
e i j = Q i ⋅ K j e_{ij} = Q_i \cdot K_j eij=Qi⋅Kj
-
对得分进行 softmax 归一化,得到每个输入的注意力权重:
α i j = exp ( e i j ) ∑ k exp ( e i k ) \alpha_{ij} = \frac{\exp(e_{ij})}{\sum_k \exp(e_{ik})} αij=∑kexp(eik)exp(eij)
-
用这些注意力权重对值(Value)进行加权求和,得到 加权值(Weighted Sum),作为当前时刻的输出:
c i = ∑ j α i j ⋅ V j c_i = \sum_j \alpha_{ij} \cdot V_j ci=j∑αij⋅Vj
这种机制使得模型能够关注输入序列中与当前目标位置相关的所有信息。
2.3 多头注意力机制(Multi-Head Attention Mechanism)
多头注意力机制 是 Transformer 中的一个重要扩展,它并行地执行多个注意力头,每个头专注于捕捉输入序列中的不同方面的信息。通过使用多个头,Transformer 可以从多个不同的子空间中学习不同的表示,从而增强模型的表达能力。
对于每个注意力头,我们执行以下操作:
- 将查询、键和值分别映射到多个子空间。
- 对每个子空间执行自注意力计算,得到多个输出。
- 将多个输出拼接起来,并通过一个线性变换得到最终的结果。
具体计算公式为:
MultiHeadAttention
(
Q
,
K
,
V
)
=
Concat
(
head
1
,
head
2
,
.
.
.
,
head
h
)
W
O
\text{MultiHeadAttention}(Q, K, V) = \text{Concat}(\text{head}_1, \text{head}_2, ..., \text{head}_h) W^O
MultiHeadAttention(Q,K,V)=Concat(head1,head2,...,headh)WO
其中,( \text{head}_i ) 是每个头的输出, ( W^O ) 是输出的线性变换矩阵。
2.4 位置编码(Positional Encoding)
Transformer 是一个完全并行化的模型,它不像 RNN 或 LSTM 那样天然地处理序列的顺序问题。因此,Transformer 引入了 位置编码,通过给每个输入位置提供一个唯一的编码,使得模型能够感知输入序列中各个位置的相对或绝对顺序。
位置编码的设计如下:
PE
(
p
o
s
,
2
i
)
=
sin
(
p
o
s
1000
0
2
i
/
d
m
o
d
e
l
)
\text{PE}_{(pos, 2i)} = \sin\left(\frac{pos}{10000^{2i/d_{model}}}\right)
PE(pos,2i)=sin(100002i/dmodelpos)
PE
(
p
o
s
,
2
i
+
1
)
=
cos
(
p
o
s
1000
0
2
i
/
d
m
o
d
e
l
)
\text{PE}_{(pos, 2i+1)} = \cos\left(\frac{pos}{10000^{2i/d_{model}}}\right)
PE(pos,2i+1)=cos(100002i/dmodelpos)
其中,( pos ) 是序列的位置,( i ) 是维度索引,( d_{model} ) 是嵌入的维度。通过这种方式,模型可以得到每个位置的相对或绝对位置信息。
2.5 解码器(Decoder)
解码器的任务是根据编码器的输出生成目标序列。解码器的每个层包含三个子层:
- 自注意力层(Self-Attention Layer):处理目标序列内部的依赖关系。
- 编码器-解码器注意力层(Encoder-Decoder Attention Layer):帮助解码器将编码器的输出与目标序列的当前状态结合起来。
- 前馈神经网络层(Feed-Forward Neural Network Layer):进一步处理每个时间步的输出。
3. Transformer 的优势
- 并行计算:Transformer 通过自注意力机制一次性处理整个序列,使得模型能够充分利用现代硬件(如 GPU 和 TPU)的并行计算能力,大大提高了训练速度。
- 捕捉长距离依赖:由于自注意力机制可以直接计算序列中任意位置之间的依赖关系,Transformer 不会像 RNN 和 LSTM 那样遇到梯度消失的问题。
- 灵活性:Transformer 架构设计灵活,能够轻松扩展,并且广泛应用于各种 NLP 任务,如机器翻译、文本生成、问答系统等。
4. 实验与结果
论文中,Transformer 在 WMT 2014 英文-德文和英文-法文的机器翻译任务上进行了实验,结果表明,Transformer 超越了当时最先进的基于 LSTM 的模型,并且具有更高的训练效率。Transformer 不仅在翻译质量上取得了优秀的成绩,还能比传统的 RNN/LSTM 模型更快地训练和推理。
5. 结论
Transformer 模型提出了一种基于自注意力机制的全新架构,摒弃了传统的循环神经网络结构,能够高效地捕捉长距离依赖并进行并行计算。Transformer 的提出为自然语言处理领域带来了革命性的变化,许多后续的预训练模型(如 BERT、GPT、T5 等)都基于 Transformer 架构,取得了显著的成果。