关于信创终端的10个基础问题与答复

原文链接:关于信创终端的10个基础问题与答复
在这里插入图片描述

1. 龙芯架构(LoongArch64)电脑能否安装Windows?

答:不可以,架构不支持。龙芯架构采用的是自主研发的LoongArch64指令集,与Windows所支持的x86和ARM架构不同,因此无法安装Windows操作系统。

2. 华为海思Kirin990/9006c/9000c电脑能否安装Windows?

答:不可以,架构不支持。华为海思Kirin系列芯片基于ARM架构设计,而Windows目前仅支持在特定的ARM设备上运行,主要是高通的ARM处理器。因此,这些华为海思处理器的电脑无法安装Windows操作系统。

3. 如何查看电脑的CPU架构?

答:

  1. 麒麟系统:进入“设置”->“关于”可以查看CPU架构。
  2. 统信系统:在“控制中心”->“系统信息”->“关于本机”中查看。
  3. 通用方法:通过命令行输入uname -m查看。返回值中,x86_64表示64位x86架构,aarch64表示64位ARM架构。

4. 如何查看电脑系统版本?

答:

  1. 麒麟系统:进入“设置”->“关于”->“版本号”查看。
  2. 统信系统:在“控制中心”->“系统信息”->“关于本机”->“版本”中查看。
  3. 命令行方法:在麒麟系统中,输入cat /etc/os-release查看系统版本信息;在统信系统中,输入cat /etc/os-version查看系统版本信息。

5. 麒麟或统信的Intel版系统镜像能否给兆芯CPU或海光CPU的电脑上安装?

答:不建议。Intel版系统镜像通常为HWE(Hardware Enablement)镜像,旨在支持最新的硬件设备。如果将Intel版镜像用于兆芯或海光CPU的电脑,可能会出现硬件不兼容的问题,如显示设备无法正确识别和使用。

6. 麒麟系统或统信系统用户密码忘记该如何重置?

答:请参考本公众号往期发布的文章,有多种方法可以支持用户密码重置,包括使用单用户模式、通过恢复模式重置密码等。

7. Windows的.exe软件安装包能直接在统信或麒麟的系统上安装吗?

答:不可以。需要通过Wine的方式或通过CPU厂商提供的二进制翻译进行安装,但这些方法都不能保证软件包能够100%成功安装或正常运行。

8. 麒麟系统或统信系统之间用什么传输文件?

答:

  1. 可以通过共享文件夹的方式传输,具体操作请参考本公众号之前的文章。
  2. 可以使用scp命令进行文件传输,命令格式为:scp [source] [user]@[host]:[destination]
  3. 可以通过Localsend等工具进行文件传输,具体操作方法也可参考本公众号之前的文章。

9. 在麒麟系统或统信系统上可以使用什么虚拟机?

答:可以使用VMware Workstation Pro、VirtualBox、KVM等虚拟机软件,但前提是电脑的CPU需要支持虚拟化技术(如Intel VT-x或AMD-V)。

10. 麒麟系统或统信系统的系统源出现问题,不能在软件商店下载软件怎么办?

答:最简单的方法是在同型号正常运行的系统上拷贝/etc/apt/sources.list文件及/etc/apt/sources.list.d/目录下的文件到有问题的电脑上,然后运行apt update命令更新系统源,以解决软件源问题。

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列新性的训练策略,解决了传 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督号,能够原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鹏大圣运维

编写不易,还请支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值