线性回归、多层感知机系统和BP网络

一.环境安装

1.选择操作系统

深度学习环境可以在多种操作系统上运行,包括Linux、Windows和macOS等。

推荐使用Linux,使用Ubuntu或CentOS。您可以在其官方网站上下载对应版本的安装映像,并根据提示安装。

不过使用Windows操作系统也可以进行学习,下面将以我自己使用Windows为例进行说明。

2.安装CUDA(大多数都自己带有)和cuDNN

这是深度学习中常用的GPU加速库,需要与所使用的深度学习框架版本相匹配。在安装CUDA和cuDNN之前,需要检查计算机的GPU是否支持CUDA。

此处需要检查自己的CUDA版本,一般在NVIDIA控制中心,这里可以看到我的版本是11.2。

3.安装深度学习框架

目前常用的深度学习框架包括TensorFlow、PyTorch、Keras、Caffe等,可以根据个人需要进行选择和安装。

推荐使用PyTorch,根据自己的CUDA版本进行选择。如果找不到自己对应的版本,可以去找之前的版本,也可以直接安装CPU版本,就是运行速度不及CUDA版本。

PyTorch官网

4.安装Python和相关库

深度学习中使用的Python版本一般为Python 3.x,同时需要安装相关的科学计算库,例如numpy、scipy、matplotlib等。

5.配置环境变量

在安装完成后,需要将相应的软件路径添加到系统环境变量中,方便在命令行中直接使用。

此处推荐下载下载ANACONDA来管理自己的环境,安装完成后打开Anaconda Prompt,进入大厅base,通过以下命令新建一个环境。

ANACONDA

conda create -n pytorch python=3.9 #此处pytorch是自己设置的新环境名称

然后进入自己创建的这个环境进行配置

conda activate pytorch #此处pytorch是自己设置的新环境名称

然后在这个环境里配置自己的需要的包。

6.安装IDE或编辑器

选择适合自己的IDE或编辑器,例如PyCharm、VS Code等,可以方便地编写、调试和运行代码。

注意的一点就是要把编辑器的编译环境设置为我们上面自己设置好的环境的python的解释器。

二.线性神经网络

1.线性回归

线性回归是一种用于建立自变量和因变量之间线性关系的机器学习算法。它通常用于预测数值型输出。该算法的基本思想是通过拟合一条直线或一个超平面来描述输入变量和输出变量之间的关系。

具体地说,线性回归假设自变量和因变量之间存在一个线性关系,用以下的数学公式表示:

y = b0 + b1 * x1 + b2 * x2 + ... + bn * xn

其中,y表示因变量(输出),x1, x2, ..., xn是自变量(输入),b0, b1, b2, ..., bn是模型的系数,也称为权重。

在训练过程中,算法会自动调整这些权重,以最小化预测值与真实值之间的误差。这种误差通常用平方误差(SSE)来度量,即将每个样本的预测值与真实值之差平方后求和。算法的目标是最小化SSE。

在预测时,我们可以输入自变量的值,利用模型的系数计算出因变量的预测值。

线性回归可以应用于很多实际问题,例如房价预测、销售预测、股票价格预测等。但是,线性回归有一些限制,例如它只能拟合线性关系、对异常值敏感等。为了解决这些问题,我们可以使用其他更高级的回归模型。

2.梯度下降法

梯度下降法是一种常用的优化算法,用于在机器学习中最小化成本函数或损失函数。它是一种迭代算法,每次迭代都朝着梯度的反方向更新参数,从而不断减小成本函数或损失函数的值,直到达到局部最优解或全局最优解。

梯度下降法的具体步骤如下:

2.1随机初始化参数

为了开始优化过程,我们需要先随机初始化参数。这些参数将决定我们的模型最终的形状和准确性。

2.2计算梯度

通过计算成本函数对每个参数的偏导数,我们可以得到损失函数的梯度向量,即函数在当前参数值处的下降方向。在批量梯度下降法中,我们需要对整个训练集计算梯度;而在随机梯度下降法和小批量梯度下降法中,我们只需要对一个随机选取的样本或一小批样本进行梯度计算。

2.3更新参数

根据梯度向量和学习率,更新参数。学习率决定了我们更新参数的速度和跨越的步长。如果学习率太小,则优化速度会很慢;如果学习率太大,则可能会错过最小值。

2.4重复以上步骤

重复以上步骤,直到成本函数或损失函数收敛或达到指定的迭代次数。

梯度下降法是一种常用的优化算法,在深度学习中也得到了广泛的应用,例如神经网络的训练过程中。但是,梯度下降法也存在一些问题,例如可能陷入局部最优解、容易受到初始值的影响等。因此,研究者们也提出了许多改进算法,例如随机梯度下降、动量梯度下降、自适应学习率优化算法等。

三.多层感知机系统

多层感知机(Multilayer Perceptron, MLP)是一种前馈神经网络,由多个层组成,包括输入层、多个隐藏层和输出层。每一层都由多个神经元组成,每个神经元都有一些权重和一个激活函数。

多层感知机模型可以用于分类和回归问题。在分类问题中,输出层通常采用softmax函数,将输出转化为概率分布,然后根据最大概率确定预测结果。在回归问题中,输出层通常只有一个神经元,输出一个连续的数值。

多层感知机的训练通常采用反向传播算法(Backpropagation),它是一种基于梯度下降的优化算法,用于调整每个神经元的权重和偏置,使得模型的预测结果与真实值之间的误差最小化。反向传播算法利用链式法则计算每个神经元的误差梯度,并根据梯度更新神经元的参数。

由于多层感知机具有强大的表示能力,可以学习到非常复杂的函数,因此在各种领域中都取得了很好的效果,例如图像处理、语音识别、自然语言处理等。

在实践中,我们通常使用现有的深度学习框架,例如TensorFlow、PyTorch和Keras等来构建和训练多层感知机模型。

四.BP网络

1.BP算法介绍

BP算法,即反向传播算法(Backpropagation),是一种用于训练多层前馈神经网络的常用算法。该算法利用链式法则计算每个神经元的误差梯度,并根据梯度更新神经元的权重和偏置,使得模型的预测结果与真实值之间的误差最小化。以下是BP算法的详细步骤:

1.初始化权重和偏置:为了开始训练神经网络,需要初始化权重和偏置。通常使用随机数来初始化权重和偏置。

2.前向传播计算输出:将输入样本送入神经网络的输入层,经过前向传播计算得到输出结果。

3.计算误差:计算输出结果与真实值之间的误差。误差可以使用各种不同的度量方式,例如平方误差或交叉熵误差等。

4.反向传播计算误差梯度:利用链式法则计算每个神经元的误差梯度。误差梯度表示了神经元的输出对误差的影响,它是权重和偏置的偏导数。具体来说,对于输出层的每个神经元,误差梯度可以直接计算得到;对于隐藏层的每个神经元,误差梯度需要从后一层神经元反向传播得到。

5.更新权重和偏置:根据误差梯度和学习率更新每个神经元的权重和偏置。学习率控制每次更新的步长,过大的学习率可能导致震荡或发散,过小的学习率可能导致收敛缓慢。

6.重复步骤2-5:重复进行前向传播、计算误差、反向传播和更新权重和偏置的步骤,直到模型收敛或达到最大迭代次数。

模型评估:使用另一组数据集对训练得到的模型进行评估,通常使用准确率、精度、召回率和F1值等指标来评估模型性能。

2.感悟反思

作为一个人工智能领域的初学者,我对BP算法的学习感受是:虽然BP算法的数学推导有些复杂,但是通过对这个算法的深入学习和理解,可以真正领悟到神经网络的内在原理和工作机制,这对于进一步深入研究和应用神经网络具有很大的帮助。

在学习BP算法的过程中,我通过多次阅读相关的论文和教材,结合实际的代码实现,逐步理解了BP算法的思想和实现过程。我也深刻地认识到BP算法需要大量的数据和计算资源来支持其训练和优化,同时也需要不断地调整学习率和网络结构等参数,以达到最佳的性能和准确率。

总的来说,BP算法是一个重要而又复杂的算法,它在神经网络领域有着广泛的应用和深远的影响。对于初学者来说,需要耐心学习和掌握这个算法,并结合实际应用场景进行实践,才能更好地理解和应用神经网络技术。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值