Go语言的自动内存管理及优化(字节跳动Balanced GC优化方案)(Day5)

目录

>自动内存管理

>>自动内存管理-相关概念

>>追踪垃圾回收

>>回收步骤

 >>分代GC(Generational GC)

 >>引用计数

 >Go内存管理及优化

>>Go内存分配——分块

 >>Go内存分配——缓存

 >>Go内存管理优化

 >>字节跳动内存分配优化方案:Balanced GC

 >>Balanced GC——性能收益


>自动内存管理

  • 动态分配内存
    • 程序在运行时根据需求动态分配的内存:malloc()
  • 自动内存管理(垃圾回收):由程序语言的运行时系统管理动态内存
    • 避免手动内存管理,专注于实现业务逻辑
    • 保证内存使用的正确性安全性:double-free proble,use-after-free problem
    • double-free proble:两次回收内存,use-after-free problem:回收内存后再使用
  • 三个任务
    • 为对象分配空间
    • 找到存活对象
    • 回收死亡对象的内存空间

>>自动内存管理-相关概念

  • Mutator:业务线程,分配新对象,修改对象指向关系
  • Collector:GC线程,找到存活对象,回收死亡对象的内存空间
  • Serial GC:只有一个collector

Mutator Pause后执行一个collector

  • Parallel GC:支持多个collectors同时回收的GC算法

Mutator Pause之后执行多个collectors同时回收

  • Concurrent GC:mutator(s)和collector(s)可以同时执行

 Collectors必须感知对象指向关系的改变!

  •  评价GC算法

    • 安全性(Safety):不能回收存活的对象 基本要求
    • 吞吐率(Throughput):花在GC上的时间,吞吐率越高越好
    • 暂停时间(Pause time):stop the world(STW) 业务是否感知
    • 内存开销(Space overhead)GC元数据开销
  • 追踪垃圾回收(Tracing garbage collection)
  • 引用计数(Reference counting)

>>追踪垃圾回收

  • 对象被回收的条件:指针指向关系不可达的对象

  • 标记根对象

    • 静态变量,全局变量,常量,线程栈等
  • 标记:找到可达对象

    • 求指针指向关系的传递闭包:从根对象出发,找到所有可达对象
  • 清理:所有不可达对象

    • 将存活对象复制到另外的内存空间(Copying GC)
    • 将死亡对象的内存标记为“可分配”(Mark-sweep GC)
    • 移动并整理存活对象(Mark-compack GC)
  • 根据对象的生命周期,使用不同的标记和清理策略

>>回收步骤

>>>未标记之前

>>>标记根对象

 >>>标记根对象指针可以指向的对象,然后对象再一层一层的指向指针可指向的对象,传递闭包,从根对象出发,找到所有可达对象,将他们标记处理

 >>>清理所有的不可达对象,也就是没有指针指向的对象(虚线圈圈)

 Copying GC:将存活对象复制到另外的内存空间

 Mark-sweep GC:使用free list管理空闲内存,跳过存活对象

Mark-Compact GC:原地整理对象,将存活对象压缩

 >>分代GC(Generational GC)

  • 分代假说(Generational hypothesis):most objects die young
  • Intuition:很对对象在分配出来后很快就不再使用了
  • 每个对象都有年龄:经历过GC的次数
  • 目的:针对年轻和老年的对象,指定不同的GC策略,降低整体内存开销
  • 不同年龄的对象处于heap的不同区域

  •  年轻代(Young generation)
    • 常规的对象分配
    • 由于存活对象很少,可以采用copying collection
    • GC吞吐率很高

  • 老年代(Old generation)
    • 对象趋向于一直活着,反复复制开销较大
    • 可以采用 mark-sweep collection


 >>引用计数

  •  每个对象都有一个与之关联的引用数目
  • 对象存活的条件:当且仅当引用数大于0
  • 优点
    • 内存管理的操作被平摊到程序执行过程中
    • 内存管理不需要了解runtime的实现细节:C++只能指针(smart pointer)
  • 缺点
    • 维护引用计数的开销较大:通过原子操作保证对引用计数操作的原子性可见性
    • 无法回收环形数据结构——weak reference
    • 内存开销:每个对象都引入的额外内存空间存储引用数目
    • 回收内存时依然可能引发暂停

途中红色的环形数据结构无法回收,因为每一个对象的引用计数都不为0

途中的灰色就是需要被回收的对象,例如左下角,引用计数0的对象A要被回收了,A引用的引用计数1为B,因为对象A要被回收了,所以对象B的引用计数也会变为0,所以对象B也要被回收

o被p引用,此时o的引用计数为1,然后o又被q引用,此时o的引用计数为2,然后p,q都为空,此时o的引用计数为0,所以o要被回收。

 


 >Go内存管理及优化


>>Go内存分配——分块

  • 目标:为对象在heap上分配内存
  • 提前将内存分块
    • 调用系统调用mmap() 向OS申请一大块内存,例如4MB
    • 先将内存划分成大块,例如8KB,称作mspan
    • 再将大块继续划分成特定大小的小块,用于对象分配
    • noscan mspan:分配不包含指针的对象——GC不需要扫描
    • scan mspan:分配包含指针的对象——GC需要扫描
  • 对象分配:根据对象的大小,选择最合适的块返回

 >>Go内存分配——缓存

  • TCMalloc:thread caching
  • 每个p包含一个mcache用于快速分配,用于为绑定于p上的g分配对象
  • mcache管理一组mspan
  • 当mcache中的mspan分配wanbi,向mcentral申请带有未分配块mspan
  • 当mspan中没有分配的对象,mspan会被缓存在mcentral中,而不是立刻释放并归还给OS

 >>Go内存管理优化

  • 对象分配是非常高频的操作:每秒分配GB级别的内存
  • 小对象占比较高
  • Go内存分配比较耗时
    • 分配路径长:g->m->p->mcache->mspan->memory block->return pointer
    • pprof:对象分配的函数是最频繁调用的函数之一

 

 >>字节跳动内存分配优化方案:Balanced GC

  • 每个g都绑定一大块内存(1KB),称作goroutine allocation buffer(GAB)
  • GAB用于noscan类型的小对象分配:<128B
  • 使用三个指针维护GAB:base,end,top
  • Bump pointer(指针碰撞)风格对象分配
    • 无须和其他分配请求互斥
    • 分配动作简单高效

  •  GAB对于Go内存管理来说是一个对象
  • 本质:将多个小对象的分配合并成和一次达对象的分配
  • 问题:GAB的对象分配方式会导致内存被延迟释放
  • 方案:移动GAB中存活的对象
    • 当GAB总大小超过一定阈值时,将GAB中存活的对象复制到另外分配的GAB中
    • 原来的GAB可以释放,避免内存泄漏
    • 本质:用copying GC的算法管理小对象

 

根据对象的生命周期,使用不同的标记和清理策略

 >>Balanced GC——性能收益

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Boruta 特征选择方法是一种比较常用的特征选择方法,其主要思想是通过比较每个特征与随机生成的“影子特征”之间的重要性,来判断哪些特征是重要的。 在 Python 中,可以使用 boruta 包来实现 Boruta 特征选择,使用方法如下: ```python from boruta import BorutaPy from sklearn.ensemble import RandomForestClassifier from sklearn.datasets import load_digits # 加载数据 digits = load_digits() X = digits.data y = digits.target # 初始化随机森林分类器 rf = RandomForestClassifier(n_jobs=-1, class_weight='balanced', max_depth=5) # 初始化 Boruta 特征选择器 feat_selector = BorutaPy(rf, n_estimators='auto', verbose=2) # 进行特征选择 feat_selector.fit(X, y) # 打印结果 print(feat_selector.support_) print(feat_selector.ranking_) ``` 但是,Boruta 特征选择方法可能会导致计算量很大,因为它需要比较每个特征与随机生成的“影子特征”之间的重要性。因此,可以采用以下几种方式来优化: 1. 对数据进行降维处理,降低维度后再进行 Boruta 特征选择。可以使用 PCA 或 LDA 等降维方法。 2. 设置 n_estimators 参数,控制随机森林中决策树的数量,从而控制计算量。可以根据数据集大小和计算资源来调整这个参数。 3. 使用并行计算,加快计算速度。可以使用 joblib 或 multiprocessing 等库来实现并行计算。 4. 对数据进行采样,减少数据量。可以使用随机采样或分层采样等方法。 5. 调整其他 Boruta 参数,比如 max_iter、perc 和 two_step 等,从而控制计算量。 通过以上方法,可以有效地优化 Boruta 特征选择方法,提高特征选择的速度和效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值