在机器学习中,测试数据集和验证数据集的主要区别体现在使用阶段与目的上:
- 验证数据集
- 用于训练过程中调整超参数(如学习率、正则化系数)
- 监控模型是否过拟合训练数据
- 辅助进行模型选择(例如不同神经网络结构的比较)
- 使用示例:
for epoch in range(100):
model.train(train_data)
val_loss = model.evaluate(val_data) # 根据验证集表现调整训练策略
- 测试数据集
- 仅在最终模型确定后使用一次
- 模拟模型在真实场景中的表现
- 要求严格保持"不可见性",不参与任何参数调整过程
- 评估指标示例:
$$ \text{准确率} = \frac{\text{正确预测数}}{N} \times 100% $$
数据划分建议比例:
- 小数据集(万级以下):70%训练 / 15%验证 / 15%测试
- 大数据集:98%训练 / 1%验证 / 1%测试
注意事项:
- 两者都应保持与训练集相同的分布
- 避免通过多次测试集评估变相"训练"模型
- 时序数据需确保测试集时间晚于训练/验证集