博弈论核心概念剖析:重复严格优势、可理性化与相关均衡深度解读
在博弈论的理论体系中,重复严格优势、可理性化以及相关均衡是理解博弈参与者策略互动与均衡达成的核心概念。朱·弗登博格(Drew Fudenberg)与让·梯若尔(Jean Tirole)在经典著作《博弈论》中对这些内容进行了深入且系统的阐述。本文将结合原理推导、公式解析、丰富案例对这些概念展开全方位解读,展现其在博弈分析中的强大解释力与应用价值。
一、重复严格优势:策略空间的精细化迭代剔除
1. 严格劣势策略的判定原理
对于参与者
i
i
i,若存在策略
s
i
′
∈
S
i
s_i'\in S_i
si′∈Si,使得对其他参与者所有策略组合
s
−
i
∈
S
−
i
s_{-i} \in S_{-i}
s−i∈S−i,均满足:
u
i
(
s
i
′
,
s
−
i
)
>
u
i
(
s
i
,
s
−
i
)
u_i(s_i', s_{-i}) > u_i(s_i, s_{-i})
ui(si′,s−i)>ui(si,s−i)
则
s
i
s_i
si 为严格劣势策略。
u
i
u_i
ui 为收益函数,该式表明
s
i
′
s_i'
si′ 收益始终高于
s
i
s_i
si。
2. 重复剔除的迭代过程
以双人博弈为例:
- 初始阶段: S 1 0 = S 1 S_1^0 = S_1 S10=S1, S 2 0 = S 2 S_2^0 = S_2 S20=S2。
- 迭代剔除:每轮检查并剔除严格劣势策略,如第一轮得到 S 1 1 S_1^1 S11 和 S 2 1 S_2^1 S21,第 k k k 轮基于 S 1 k − 1 S_1^{k-1} S1k−1 和 S 2 k − 1 S_2^{k-1} S2k−1 继续剔除,直至 S 1 k = S 1 k − 1 S_1^k = S_1^{k-1} S1k=S1k−1 且 S 2 k = S 2 k − 1 S_2^k = S_2^{k-1} S2k=S2k−1。
3. 丰富案例分析
案例一:经典囚徒困境
收益矩阵:
参与者2\参与者1 | 坦白 | 抵赖 |
---|---|---|
坦白 | (-3, -3) | (0, -5) |
抵赖 | (-5, 0) | (-1, -1) |
参与者 1 的抵赖是严格劣势策略,同理参与者 2 也剔除抵赖,最终均衡为(坦白,坦白)。 |
案例二:企业价格竞争博弈
收益矩阵(利润,万元):
参与者2\参与者1 | 高价 | 中价 | 低价 |
---|---|---|---|
高价 | (50, 50) | (30, 60) | (10, 70) |
中价 | (60, 30) | (40, 40) | (20, 50) |
低价 | (70, 10) | (50, 20) | (30, 30) |
参与者 1 剔除高价策略,参与者 2 同理,聚焦后续策略分析。 |
二、可理性化:基于信念体系的策略合理性分析
1. 可理性化的核心逻辑与数学表达
最优反应集
B
R
i
(
Δ
S
−
i
)
BR_i(\Delta S_{-i})
BRi(ΔS−i) 定义为:
B
R
i
(
Δ
S
−
i
)
=
{
s
i
∈
S
i
∣
∑
s
−
i
∈
S
−
i
μ
(
s
−
i
)
u
i
(
s
i
,
s
−
i
)
≥
∑
s
−
i
∈
S
−
i
μ
(
s
−
i
)
u
i
(
s
i
′
,
s
−
i
)
∀
s
i
′
∈
S
i
}
BR_i(\Delta S_{-i}) = \left\{ s_i \in S_i \mid \sum_{s_{-i} \in S_{-i}} \mu(s_{-i}) u_i(s_i, s_{-i}) \geq \sum_{s_{-i} \in S_{-i}} \mu(s_{-i}) u_i(s_i', s_{-i}) \quad \forall s_i' \in S_i \right\}
BRi(ΔS−i)=⎩
⎨
⎧si∈Si∣s−i∈S−i∑μ(s−i)ui(si,s−i)≥s−i∈S−i∑μ(s−i)ui(si′,s−i)∀si′∈Si⎭
⎬
⎫
可理性化策略集
R
i
R_i
Ri 迭代生成:
R
i
0
=
S
i
,
R
i
k
+
1
=
⋃
μ
∈
Δ
R
−
i
k
B
R
i
(
μ
)
,
R
i
=
⋂
k
=
0
∞
R
i
k
R_i^0 = S_i, \quad R_i^{k + 1} = \bigcup_{\mu \in \Delta R_{-i}^k} BR_i(\mu), \quad R_i = \bigcap_{k = 0}^{\infty} R_i^k
Ri0=Si,Rik+1=μ∈ΔR−ik⋃BRi(μ),Ri=k=0⋂∞Rik
2. 深入案例解析
案例一:市场进入博弈
收益矩阵:
参与者2\参与者1 | 进入 | 不进入 |
---|---|---|
反击 | (-1, -1) | (0, 2) |
默许 | (1, 1) | (0, 2) |
参与者 1 进入是对参与者 2 默许的最优反应,(进入,默许)为可理性化组合。 |
案例二:广告投放博弈
收益矩阵(市场份额,%):
参与者2\参与者1 | 投放 | 不投放 |
---|---|---|
投放 | (20, 20) | (30, 10) |
不投放 | (10, 30) | (25, 25) |
通过期望收益分析,投放是参与者 1 的可理性化策略。 |
三、相关均衡:引入公共信号的协调机制创新
1. 相关均衡的构造与原理
满足激励相容条件:
∑
ω
:
σ
i
(
ω
)
=
s
i
p
(
ω
)
u
i
(
s
i
,
σ
−
i
(
ω
)
)
≥
∑
ω
:
σ
i
(
ω
)
=
s
i
p
(
ω
)
u
i
(
s
i
′
,
σ
−
i
(
ω
)
)
\sum_{\omega: \sigma_i(\omega) = s_i} p(\omega) u_i(s_i, \sigma_{-i}(\omega)) \geq \sum_{\omega: \sigma_i(\omega) = s_i} p(\omega) u_i(s_i', \sigma_{-i}(\omega))
ω:σi(ω)=si∑p(ω)ui(si,σ−i(ω))≥ω:σi(ω)=si∑p(ω)ui(si′,σ−i(ω))
对所有
s
i
′
∈
S
i
s_i' \in S_i
si′∈Si 成立,确保参与者无偏离动机。
2. 多元案例展示
案例一:交通通行博弈
收益矩阵:
车2\车1 | 直行 | 等待 |
---|---|---|
直行 | (-1, -1) | (1, 0) |
等待 | (0, 1) | (0, 0) |
引入抛硬币信号,构成相关均衡,提升协调效率。 |
案例二:供应链合作博弈
收益矩阵(利润,万元):
参与者2\参与者1 | 深度合作 | 浅度合作 |
---|---|---|
深度合作 | (80, 80) | (30, 90) |
浅度合作 | (90, 30) | (50, 50) |
通过市场需求信号构建相关均衡,提升合作收益。 |
四、总结与理论价值延伸
重复严格优势简化策略空间,可理性化从信念解释策略选择,相关均衡通过公共信号优化协调。三者在经济、管理、计算机等领域具重要应用价值,为分析博弈互动提供了核心工具。
参考文献
[1] 朱·弗登博格,让·梯若尔. 博弈论[M]. 中国人民大学出版社, 2015.