SPSS基本统计分析

本文介绍了统计学中的基本概念,如均值、标准差、方差、全距、峰度、偏度和均值标准误差,以及如何在SPSS中计算和分析这些指标。特别关注了数据分布的形态,如正态分布的比较和非正态分布的特点。此外,还提及了频数统计、分组计算、统计图形和自定义分位点的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基本统计量

1.均值
2.标准差
3.方差
4.最小值、最大值、总和
5.全矩(Range)

全距也称为极差,是数据的最大值与最小值之间的绝对差。全距是刻画某变量所有取值离散程度的另一个统计量。在相同样本容量的情况下的两组数据,全距大的一组数据要比全距小的一组数据更分散。当全距非常小时,则意味着数据基本都集中在一起。

6.峰度(Kurtosis)
人们一般对数据的正态分布形态比较熟悉,因此在刻画一变量取值的分布形态时,通常与正态分布相比较。

分布形态可以从数据分布的陡缓程度方面来描述。峰度就是描述某变量所有取值分布形态陡缓程度的统计量。
在SPSS中,与正态分布相比,峰度为0表示其数据分布与正态分布的陡缓程度相同;峰度大于0表示比正态分布高峰要更陡峭,为尖顶峰;峰度小于0表示比正态分布的高峰要平坦,为平顶峰

7.偏度(Skcwness)
偏度也是用来刻画数据分布形态的,它是描述某变量所有取值分布形态的对称性的统计量。

在SPSS中,与正态分布相比,偏度为0表示其形态分布偏度相同,左右对称;偏度大于0表示正偏差数值较大,为正偏或称右偏,有一条长尾拖在右边;偏度小于0表示负偏差数值较大,为负偏或称左偏,有一条长尾拖在左边。偏度的绝对值越大表示数据的分布形态的偏斜程度就越大。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值