对复杂结构的振动及声学动力学问题,传统的解法是:
-
从弹性力学、振动力学和波动声学出发,列出各振动结构的振动方程以及与结构连接方式相对应的边界条件,解出振动速度或者声压;
-
直接利用数值计算方法计算(例如有限元法、边界元法等)。
这些方法着重分析振动、声场耦合的详细过程以及描述各个模态的波动情况。
但随着结构(声场)的复杂、边界条件的增多,特别是随着结构(声场)频率的增高,波动模式增多后,利用这些方法进行计算非常困难。
统计能量分析基本概念
统计能量分析(Statistical Energy Analysis,简记为 SEA)是研究复杂结构系统声学动力学问题的有效方法之一,它的提出与发展为结构噪声与振动(特别是高频振动)的分析开辟了广阔的前景。
-
“统计”意义是指允许有较粗略的系统模型系数,也就是说所研究的系统对象是从用随机参数描述的总体中抽取出来的。这样就可以较快地提供复杂系统的声振环境预示。
-
“能量”的含义是用能量描述各种动力学子系统的状态,使用功率流平衡方程描述子系统间的相互作用关系。
使用能量作为统计能量分析中独立的动力学变量,就可统一处理结构和流体声场间的耦合动力学问题,从而沟通了传统机械振动与声学间的联系。在统计能量分析中先要进行子系统的能量预示,然后再转换成所需要的振动级、声压级等参数。
统计能量分析起源于航空航天工业并经过了三十多年的发展历程,并成功地应用于船舶工业。如今正被用作:
-
范围广泛的噪声与振动问题的预测模型;
-
对噪声和振动控制进行优化。
统计能量分析把复杂系统划分为不同的模态群,并从统计意义上把大系统分解成若干个便于分析的、独立的子系统,而不是逐个精确地确定每个模态的响应。
应用统计能量分析的第一步就是定义出模态群构成的子系统,而且建立的统计能量分析模型必须能够清楚地表示出能量的输入、储存、损耗和传输的特征。
统计能量分析模块化方法要用三个结构参数:
-
子系统的模态密度(每Hz中的模态数,类似于热力学模型中的热容量);
-
子系统的内部损耗因子,它与结构阻尼和声辐射阻尼引起的能量损失有关;
-
结合点的耦合损耗因子,代表传过不连续结构(例如凸缘、壁厚的阶跃变化、结构—声学容积的界面等)的能量损失。
模态密度
模态密度n(f)定义为单位频率(1Hz)内的模态数目
1
弯曲振动梁
式中:L是梁长,