导读:有限体积法的工作原理。
一、求解对象
首先提一下我们的主角Navier-Stokes方程:
为了能够通过SIMPLE算法求解Navier-Stokes方程,我们需要将该方程改写为下列矩阵形式的方程:
其中为了系数矩阵,是每个网格未知的速度矢量,为右侧项。
一旦我们将Navier-Stokes方程写成线性化矩阵形式,我们就能够通过各种线性方程求解器来求解迭代过程中的速度场。
因此本文主讲解重点是将Navier-Stokes方程转换为矩阵形式,然后通过有限体积法求解。
二、有限体积法
为了方便演示,我们以稳定、不可压缩的Navier-Stokes方程为例:
采用三维多面体网格进行离散化。
在二阶有限体积法中,流动变量(、、)沿着网格线性变化,这些流动变量,包括压力、温度、速度等会被存储网格中心()。
我们同样需要考虑相邻网格,通常每个网格都有个相邻网格,流动变量存储在这些网格中心()。
这就是有限体积最原始的样子。