聊一聊有限体积法

本文深入探讨有限体积法在处理Navier-Stokes方程时的工作原理,从源项、对流项与扩散项的角度进行解析。通过对Navier-Stokes方程的线性化和离散化,展示了如何将其转化为矩阵形式,并讨论了源项的隐式和显式处理,以及对流项的处理方法,为CFD求解提供关键理解。
摘要由CSDN通过智能技术生成

导读:有限体积法的工作原理。

一、求解对象

首先提一下我们的主角Navier-Stokes方程:

为了能够通过SIMPLE算法求解Navier-Stokes方程,我们需要将该方程改写为下列矩阵形式的方程:

其中为了系数矩阵,是每个网格未知的速度矢量,为右侧项。

一旦我们将Navier-Stokes方程写成线性化矩阵形式,我们就能够通过各种线性方程求解器来求解迭代过程中的速度场。

因此本文主讲解重点是将Navier-Stokes方程转换为矩阵形式,然后通过有限体积法求解。

二、有限体积法

为了方便演示,我们以稳定、不可压缩的Navier-Stokes方程为例:

采用三维多面体网格进行离散化。

在二阶有限体积法中,流动变量(、、)沿着网格线性变化,这些流动变量,包括压力、温度、速度等会被存储网格中心()。

我们同样需要考虑相邻网格,通常每个网格都有个相邻网格,流动变量存储在这些网格中心()。

这就是有限体积最原始的样子。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值