第一次接触深度学习框架,在配置环境中出现很多问题,经过各种查资料和配置终于成功了,下面把自己失败的几次问题以及具体过程分享一下。
配置tensorflow需要提前做这几个准备:
1)Anaconda,python3.7(这里我用的师兄的下载包,因为这个包是前几年的所以相关的python还是3.7.3版本。官网在此https://www.continuum.io/downloads#windows)
2)cuda(CUDA Toolkit Archive | NVIDIA Developer)+cudnn(https://developer.nvidia.com/rdp/cudnn-archive)
3)tensorflow(一定要与cuda,python版本配对!!)
1.首先看一下电脑配置
桌面右键,在NVIDIA 控制面板--系统信息--组件,我的是cuda11.6,在下载cuda的时候要下载11.6版本
2.下载Anaconda与python
这里版本主要看Anaconda官网,现在应该到python3.9了,下载就完事了,看了很多经验贴,说是不用下载python,但是保险起见,我根据Anaconda也下载了相应的python版本。
3.cuda
在cuda网站下载与自身电脑相应的cuda版本,然后下载cudnn压缩包,解压后这三个文件分别放到cuda对应的文件里
配置路径,此电脑--属性-- 高级系统设置--环境变量--path--新建
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6\libnvvp
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6\extras\CUPTI\lib64
注意!!这三个一定要置顶,无先后顺序要求!
4.tensorflow
这里一定要看好版本,我第一次就是直接复制别人的指令结果导致后面安装失败,在Anaconda下载完毕后会生成一个Anaconda prompt,点开输入python
输入pip install tensorflow-gpu==2.6.0
我这里下载的是2.6.0版本,然后静静等待速度有点慢
5.检验是否安装成功
在Anaconda prompt中输入python,然后输入
import tensorflow as tf
tf.test.is_gpu_available()
返回值如果为True则说明安装成功
这里我主要说一下我遇到的问题吧:
1)在第一次都安装成功后,结果返回值为False并且可以看到提示找不到很多dll文件,这里我试过找这些文件然后复制进system文件夹中,但是没用,而且缺的很多工作量也不小,出现这种问题大概率就是版本不适配,因为我第一次用的cuda10.0版,但是安装的tensorflow是2.10版,我脑子感觉不太对劲 。。。
解决方法:卸载cuda,重新找到电脑可适应的cuda版本下载,检查一下python版本是不是tensorflow适配的
2)重新下载后,在检查是否安装成功后出现这个错误
解决方法:这是由于protobuf的版本过高造成的,参考了星辰辰大海大佬http://t.csdn.cn/fYimz