掩码语言模型(Masked Language Model, MLM)

掩码语言模型(Masked Language Model, MLM)是一种在自然语言处理(NLP)领域中广泛使用的深度学习技术,特别是在基于Transformer结构的模型中,如BERT、GPT-2和RoBERTa等。MLM通过一种特殊的训练方式,即随机遮蔽输入文本中的部分词汇,并要求模型根据上下文预测这些被遮蔽的词汇,从而提升模型对语言的理解和生成能力。以下是对掩码语言模型(MLM)的详细解析。

一、定义与基本原理

掩码语言模型(MLM)是一种自监督学习技术,其核心思想是在不依赖显式标注数据的情况下,通过遮蔽输入文本中的部分词汇,迫使模型利用剩余的上下文信息来预测这些被遮蔽的词汇。这种训练方式使模型能够学习到词汇之间的语义关系和上下文依赖,从而提升其在各种NLP任务中的表现。

在MLM中,输入文本的一部分词汇会被随机替换为特殊标记(如[MASK]),或者采用其他方式如替换为随机词汇或保持不变(在BERT中,这种策略被称为“遮蔽策略”,其中80%的词汇被替换为[MASK],10%被替换为随机词汇,剩余10%保持不变)。模型的任务是根据上下文预测这些被遮蔽或替换的词汇的原始形式。

二、发展历程与背景

MLM的概念和实践可以追溯到自然语言处理领域的早期研究,但真正引起广泛关注并应用于大规模预训练模型中的是BERT(Bidirectional Encoder Representations from Transformers)模型的提出。BERT是Google于2018年推出的一种基于Transformer结构的预训练语言模型,它通过MLM和下一句预测(Next Sentence

### BERT 掩码语言模型 (MLM) 工作原理与实现 #### 定义与基本原理 掩码语言模型Masked Language Model, MLM)是一种用于预训练的语言建模方法,其核心思想是在输入序列中随机遮蔽一部分词,并让模型根据未被遮罩的部分来预测这些被遮罩的词。这种方法能够有效增强模型对上下文的理解能力[^1]。 具体来说,在BERT的MLM任务中,大约有15%的token会被随机替换为特殊标记`[MASK]`或其他替代策略。随后,模型的任务就是利用剩余未被遮盖的信息去恢复原始的词汇[^2]。 #### 实现细节 以下是BERT中MLM的具体实现过程: 1. **数据准备阶段** 输入文本会经过分词器处理成一系列tokens。接着按照一定概率(通常是15%),从中选取一些tokens进行遮蔽操作。需要注意的是,这并不意味着所有的选中位置都会简单替换成`[MASK]`符号;实际上,存在三种不同的情况: - 80%的概率将该位置上的真实词语替换为`[MASK]`; - 10%的概率保持原样不变; - 另外10%的概率用其他任意的一个随机词汇代替当前的真实值[^3]。 2. **前向传播计算** 经过上述修改后的句子送入到基于Transformer架构构建而成的大规模神经网络内部完成特征提取工作之后再通过全连接层映射回词汇表空间大小维度上得到最终输出分布表示形式下的logits值集合。 3. **损失函数设计** 对于每一个实际参与masking操作的位置而言,我们只关心它对应的那个唯一正确答案所对应的softmax概率数值有多大即可。因此整个objective function只需要累加所有这些特定index处交叉熵误差项之和就可以了。 ```python import torch from transformers import BertTokenizer, BertForMaskedLM tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForMaskedLM.from_pretrained('bert-base-uncased') text = "The capital of France is [MASK]." inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits masked_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0] predicted_token_id = logits[0, masked_index].argmax(axis=-1) print(tokenizer.decode(predicted_token_id)) ``` 此代码片段展示了如何使用Hugging Face库加载预先训练好的BERT模型并执行简单的掩码填充任务实例演示效果。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值