掩码语言模型(Masked Language Model, MLM)是一种在自然语言处理(NLP)领域中广泛使用的深度学习技术,特别是在基于Transformer结构的模型中,如BERT、GPT-2和RoBERTa等。MLM通过一种特殊的训练方式,即随机遮蔽输入文本中的部分词汇,并要求模型根据上下文预测这些被遮蔽的词汇,从而提升模型对语言的理解和生成能力。以下是对掩码语言模型(MLM)的详细解析。
一、定义与基本原理
掩码语言模型(MLM)是一种自监督学习技术,其核心思想是在不依赖显式标注数据的情况下,通过遮蔽输入文本中的部分词汇,迫使模型利用剩余的上下文信息来预测这些被遮蔽的词汇。这种训练方式使模型能够学习到词汇之间的语义关系和上下文依赖,从而提升其在各种NLP任务中的表现。
在MLM中,输入文本的一部分词汇会被随机替换为特殊标记(如[MASK]),或者采用其他方式如替换为随机词汇或保持不变(在BERT中,这种策略被称为“遮蔽策略”,其中80%的词汇被替换为[MASK],10%被替换为随机词汇,剩余10%保持不变)。模型的任务是根据上下文预测这些被遮蔽或替换的词汇的原始形式。
二、发展历程与背景
MLM的概念和实践可以追溯到自然语言处理领域的早期研究,但真正引起广泛关注并应用于大规模预训练模型中的是BERT(Bidirectional Encoder Representations from Transformers)模型的提出。BERT是Google于2018年推出的一种基于Transformer结构的预训练语言模型,它通过MLM和下一句预测(Next Sentence