题目:
让我们定义dn 为:dn =pn+1−pn,其中pi是第i个素数。显然有d1=1,且对于n>1有dn是偶数。“素数对猜想”认为“存在无穷多对相邻且差为2的素数”。
现给定任意正整数N
(<105),请计算不超过N
的满足猜想的素数对的个数。
输入格式:
输入在一行给出正整数N
。
输出格式:
在一行中输出不超过N
的满足猜想的素数对的个数。
输入样例:
20
输出样例:
4
代码长度限制 16 KB
时间限制 200 ms
内存限制 64 MB
解题思路
这道题的关键在于如何判断一个数是不是素数?
如果依次遍历2到n-1,用n % [2~(n - 1)]是否有模余0来判断这个数是不是素数,那么可能会超时。这里有个定理,只需依次遍历2到sqrt(n)即可,注意这里可以取等sqrt(n)。
接下来只需统计相邻的两个素数之差相差2的个数,这个过程的方法有很多,这里不再一一赘述。
AC代码
#include <bits/stdc++.h>
using namespace std;
int main()
{
int n = 0;
int ret = 0;
int i = 0;
int j = 0;
int pre = 2;
scanf("%d", &n);
for (i = 3; i <= n; i++)
{
for (j = 2; j <= sqrt(i); j++)
{
if (0 == i % j)//如果不是素数
{
break;
}
}
if (j > sqrt(i))//如果是素数
{
if (2 == i - pre)
{
ret++;
}
pre = i;
}
}
cout << ret << endl;
return 0;
}