机器学习在材料结构与性能预测中的应用实战

本文介绍了机器学习在材料结构与性能预测中的应用,包括机器学习基础、Python语言、深度学习神经网络、经典模型及其在材料科学中的应用。通过实例展示了如何使用图神经网络预测材料性能,并探讨了当前的挑战和未来趋势,如强化学习和生成模型。此外,还涵盖了数据库构建、特征工程和模型优化等内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传统的材料研发技术是通过实验合成表征对材料进行试错和验证,而过去的计算手段受限于算法效率,无法有效求解实际工业生产中面临的复杂问题。近几年随着大数据和人工智能介入,通过采用支持向量机、神经网络等机器学习算法训练数据集来构建模型,以预测材料的结构、吸附特性、电学特性、催化性能、力学特性和热力学特性等性能,大大推动了新型材料的发现和传统材料的更新,预测结果甚至能够达到与高保真模型基本相同的精度,且计算成本很低。然而,机器学习在材料科学中的应用仍存在一些瓶颈,人工智能研究项目所需的技能和知识匮乏缺失制约着该方向的发展。

机器学习在材料结构与性能预测中的应用实战

机器学习导论

学习目标:对机器学习基本概念进行介绍,让大家对机器学习基本概念有大致了解。明确机器学习方法的适用性,优势,以及局限性等

Ø什么是机器学习

Ø机器学习的应用实例

Ø机器学习在材料领域的应用

python语言基础

学习目标:机器学习主流实现是python语言。在学习机器学习之前,有针对性的对python进行系统的学习,以方便将来开展机器学习的学习

Øpython安装与开发环境的搭建

Ø基本数据类型

Ø组合数据类型

Ø控制结构

Ø循环结构

Ø函数

Ø模块

深度学习神经网络

学习目标:从零开始手动实现一个神经网络,在这一过程中对所涉及的原理进行系统讲解及实践,让大家能够更深刻的理解算法背后的原理以及实现方法,之后有利于对其他机器学习更全面快速掌握

Ølogistic 回归与损失函数

Ø梯度下降法与 导数

Ø计算图的导数计算

Ølogistic 回归中的梯度下降法

Ø向

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值