量化金融分析师,英文名:Certificate in Quantitative Finance,简称:CQF,是由Paul Wilmott博士领导的国际知名数量金融工程专家团队设计和推出,是量化金融领域最高级的专业资格。
入门选修课:三种可选的入门课程有助于学员快速掌握基础知识。分别是数学,主要包括量化投资中要用到的基础数理统计知识;金融,主要包括量化投资所必需的基础的金融资产知识;Python,目的在于让学员掌握一门常见的量化投资编程语言。
知识模块
模块1:量化金融基础
-
资自随机行为
-
重要的教学工具和结论
-
泰勒级数
-
中心极限定理
-
偏微分方程
-
转移密度函数
-
普朗克和科尔莫戈罗夫方程
-
随机微积分及其引理
-
随机微分方程的求解
-
资产定价的二项模型
模块2:量化风险和收益
-
现代投资组合理论
-
资本市场资产定价模型
-
夏普比率和风险的市场定价
-
无风险价格套利策略
-
投资组合优化
-
布莱克利特曼模型
-
风险监督和巴塞尔条约
-
风险价值和亏损预期
-
抵押品和保证金
-
流动资产负债管理
-
波动性过滤
-
高频教据
-
资产收益:关键和经验教据
-
波动模型
模块3:股票和现金
-
布莱克-斯科尔斯模型
-
对冲和风险管理
-
期权策略
-
欧式行权和美式期权
-
有限差分法
-
蒙特卡罗模拟
-
奇异期权
-
波动率套利策略
-
吉尔萨诺夫理论
-
高级风险指标
-
衍生品市场
-
完全竞争市场中的高级波动性建模
-
非概率波动模型
模块4:数据分析和机器学习I
-
什么是数学建模?
-
机器学习种的数学工具
-
监督学习
-
线性回归
-
拉索回归,岭回归和单性网络回归
-
逻辑回归
-
K近邻策略
-
朴素贝叶斯分类
-
支持向量机
-
决策树
-
集成模型
-
Python-Scikit库
模块5:数据分析和机器学习II
-
无监督机器学习
-
高级机器学习中的数学工具
-
主成分分析
-
K-均值
-
自组织映射
-
人工神经网络
-
神经网络结构
-
自然语言处理
-
深度学习和NLP工具
-
强化学习
-
强化学习的风险敏感性
-
量化投资的机器学习实例
-
基于AI的Algo交易策略
-
Tensorflow-Python
模块6:债券和评级
-
固收产品和市场
-
收益率,久期和凸性
-
随机利率模型
-
利率的随机方法
-
数据分析和校准
-
同业拆借利率模型
-
标准风险管理模型
-
结构化模型
-
简化模型和风险率
-
信用风险和信用衍生品
-
X-值调整(CVA,DVA, FVA, MVA)
-
CDS定价和市场方法
-
违约风险,结构性和简化形式
-
关联结构模型的使用
高级选修课:一到两个高级选修课程
算法交易
-
数据准备;回测;结果分析和优化
-
新建一个算法
-
另类方法:配对交品;期权;新分析工具
-
算法交易的职业路径
高级风险管理
-
巴塞尔协议:巴塞尔协议I,II and III
-
风险价值和亏损预期
-
最小资本要求2016
-
横向流动性(LH)
-
风险和相关性
-
极位理论
-
交易对手信用风险协议
-
流动性的动态性质
高级波动率模型
-
傅里叶变换
-
复变函数
-
随机波动性
-
跳跃扩散
交易对手风险建模
这项选修课涉及到交易对手以及如何将其包括在建模中。
-
信用风险和信用衍生品
-
CVA,DVA,FVA
-
交易对手风险的利率-动态模型和建模
-
利率互换CVA和动态模型实施
复杂计算方法
-
有限差分法及其在BVP中的应用
-
根值算法
-
插值
-
数值积分
基于Python的数据分析
-
Python和数据结构
-
基于NumPy的数据分析
-
基于Pandas的金融数据时间序列分析
-
静态和交互式金融数据可视化
量化的行为金融学
-
两个系统理论
-
行为偏差;启发式过程;框架效应和分组过程
-
亏损厌恶VS风险厌恶;SP/A理论
-
线性和非线性
高级投资组合管理
-
使用随机控制进行动态投资组合优化
-
使用筛选将视图与市场数据结合起来
-
了解行为偏差和应对
-
开发新的组合风险管理
Python应用
-
基础量化方案
-
数据和文件处理
-
用户定义函数以及强大的概率和统计库
基于R语言的量化金融
-
R语言的安装和入门介绍
-
理解数据结构和数据类型
-
常见的函数
-
动手写脚本和代码
-
一些常见的异常和处理
风险预算
-
投资组合构建和管理
-
投资组合的风险价值
-
风险预算理论
-
风险预算实务
金融科技
-
金融科技入门介绍
-
金融科技-打破现有金融服务产业链
-
金融科技社群
-
金融科技技术–区块链;加密货币;大数据102;AI 102
-
金融科技方案
-
金融科技的未来
基于Python的机器学习
-
使用线性回归预测金融资产的价格和收益
-
蒙特卡罗模拟在美式期权定价中的应用
-
利用逻辑回归来处理分类问题
-
利用分类问题来预测市场收益
C++
量化的行为金融学,基于R语言的量化金融,高级投资组合管理,风险预算,Python应用,金融科技,基于Python的机器学习,C++,算法交易,高级风险管理,高级波动率模型,交易对手风险建模,复杂计算方法,基于Python的数据分析。
上面说到CQF和CFA/FRM都有一些重合的地方,但CQF更加侧重金融和科技的结合,特别是计算机编程技术。
-
C++入门和环境搭建
-
控制流和格式化–文件管理和数据输出
-
函数–头文件和源文件
-
面向对象介绍–简单的类和对象
-
数组和字符串
-
考试科目
-
CQF学习能够学习到的内容非常广,大致来说可以说是以传统的金融工程为基础,在叠加最前沿的金融领域的课程。
-
单元1-量化单元的金融基块
-
单元2-定量风险与回报
-
单元3-股票和货币
-
单元4-数据科学与机器学习
-
单元5-数据科学与机器学习‖
-
单元6-固定收益和信贷
-
高级选修课