37.不同路径(medium)

1.题目链接:

62. 不同路径 - 力扣(LeetCode)62. 不同路径 - 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。问总共有多少条不同的路径? 示例 1:[https://pic.leetcode.cn/1697422740-adxmsI-image.png]输入:m = 3, n = 7输出:28示例 2:输入:m = 3, n = 2输出:3解释:从左上角开始,总共有 3 条路径可以到达右下角。1. 向右 -> 向下 -> 向下2. 向下 -> 向下 -> 向右3. 向下 -> 向右 -> 向下示例 3:输入:m = 7, n = 3输出:28示例 4:输入:m = 3, n = 3输出:6 提示: * 1 <= m, n <= 100 * 题目数据保证答案小于等于 2 * 109https://leetcode.cn/problems/unique-paths/description/2.题目描述:

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish” )。​
问总共有多少条不同的路径?

示例 1:​

输入:m = 3, n = 7​
输出:28​

     示例 2:​
               输入:m = 3, n = 2​
               输出:3​
     解释:
               从左上角开始,总共有 3 条路径可以到达右下角。​
               1. 向右 -> 向下 -> 向下​
               2. 向下 -> 向下 -> 向右​
               3. 向下 -> 向右 -> 向下​
3. 解法(暴搜 -> 记忆化搜索 -> 动态规划):​
算法思路:
暴搜:
         a. 递归含义:给 dfs  一个使命,给他一个下标,返回从 [0, 0]  位置走到 [i, j]  位置一共有多少种方法;

        b. 函数体:只要知道到达上面位置的方法数以及到达左边位置的方法数,然后累加起来即可;

        ​c. 递归出口:当下标越界的时候返回 0 ;当位于起点的时候,返回 1 。​

记忆化搜索:
        a. 加上一个备忘录;
        b. 每次进入递归的时候,去备忘录里面看看;​c. 每次返回的时候,将结果加入到备忘录里面。

动态规划:
        a. 递归含义 -> 状态表示;​
        b. 函数体 -> 状态转移方程;​
        c. 递归出口 -> 初始化。

Java算法代码:

class Solution {
    public int uniquePaths(int m, int n) {
        //动态规划
        int[][] dp = new int[m+1][n+1];
        dp[1][1] = 1;
        for(int i = 1; i <= m; i++)
            for(int j = 1; j <= n; j++){
                if(i == 1 && j ==1) continue;
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
            }
        return dp[m][n];

         记忆化搜索
        int [][] memo = new int[m+1][n+1];
        return dfs(m,n,memo);
    }

    public int dfs(int i, int j, int[][] memo){
        if(memo[i][j] != 0) return memo[i][j];

        if(i == 0 || j == 0) return 0;
        if(i == 1 && j == 1){
            memo[i][j] = 1;
            return 1;
        }

        memo[i][j] = dfs(i - 1, j, memo) +dfs(i, j - 1, memo);
        return memo[i][j];
    }
}

运行结果:

递归展开:

这里是从动态规划进行展开的箭头图和记忆化搜索的箭头图。

如果能看懂这个流程,说明,读者就已经明白这个题目了。

逻辑展开:明白整个流程之后,就可以自己直接画出来箭头图。

---------------------------------------------------------------------------------------------------------------------------------

记住,相信你的递归函数,它可以做到!

记住,不理解时候,去尝试手动展开!

记住,逻辑展开(你不可能对所有的题目都进行手动展开)!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值