拉格朗日插值算法

#include<iostream>
using namespace std;
double Lagrange(double x[], double y[], double t, int n)
{
	double fx = 0;
	int start, end;
	if (x[0] > t)
	{
		start = 0;
		end = 7;
	}
	else if (x[n - 1] < t)
	{
		start = n - 7;
		end = n;
	}
	else
	{
		for (int i = 0; i < n; i++)
		{
			if (x[i]<t && x[i + 1]>t)
			{
				start = i - 3;
				end = i + 4;
				if (start < 0)
				{
					start = 0;
					end = 7;
				}
				if (end > n - 1)
				{
					start = n - 7;
					end = 0;
				}
			}
		}
	}
	double xx[8], yy[8];
	for (int i = 0; i < 8; i++)
	{
		xx[i] = x[start + i];
		yy[i] = y[start + i];
	}
	for (int i = 0; i < 8; i++)
	{
		double tmp = 1;
		for (int j = 0; j < i; j++)
			tmp = tmp * (t - xx[j]) / (xx[i] - xx[j]);
		for (int j = i + 1; j < 8; j++)
			tmp = tmp * (t - xx[j]) / (xx[i] - xx[j]);
		fx += tmp * yy[i];
	}
	return fx;
}
int main()
{
	int n;
	double t;
	cin >> n;
	cin >> t;
	double* x = new double[n];
	double* y = new double[n];
	for (int i = 0; i < n; i++)
	{
		cin >> *(x + i);
		cin >> *(y + i);
	}
	cout << Lagrange(x, y, t, n);
	/*
	20
	0.13
	0.10 0.1103329
	0.15 0.1736223
	0.20 0.2426552
	0.25 0.3176729
	0.30 0.3989105
	0.35 0.4865951
	0.40 0.5809439
	0.45 0.6821617
	0.50 0.7904390
	0.55 0.9059492
	0.60 1.0288456
	0.65 1.1592592
	0.70 1.2972951
	0.75 1.4430292
	0.80 1.5965053
	0.85 1.7577308
	0.90 1.9266733
	0.95 2.1032653
	1.00 2.2873552
	1.05 2.4787929
	*/
}

最终运算结果

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序猿==

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值