学习经验分享之十二:HRSC-2016遥感图像舰船数据集处理(内含获取方式)


前言

HRSC2016作为公开的遥感图像舰船数据集,是国内少有的几个对舰船类别进行细分的遥感舰船数据集,但是由于分了三个级别的类别标注,以及部分图像标注信息不全以及标注方式不容易转换为YOLO等问题,导致利用该数据集进行研究造成一定的困难。本博客分享本人对该数据集的数据集处理经验,希望能够大家有所帮助。
有需要帮助的朋友请关注私信我。可获取处理数据集的脚本程序、yolo标注格式转换好的数据集以及完整的标注信息统计表格等。
处理分为一个类别为舰船:
链接:https://pan.baidu.com/s/1rV88d6o9AzvWlhbbY37RGQ
提取码:私信后获取
处理分为四个类别军舰、民船、航母、潜艇:
链接:https://pan.baidu.com/s/1zGXmmMXSkf0xSvOBnq1wXg
提取码:私信后获


一、HRSC2016数据集介绍

HRSC2016数据集官网
https://sites.google.com/site/hrsc2016/
由西北工业大学于2016年发布
提取自Google Earth中6个重要港口
由西北工业大学于2016年发布
采用oriented bounding boxes(OBB)标注格式
image size:300 × 300 ~ 1500 × 900
image number:总数为1680张,但是只有1061张为有效进行标注的图像。这也是很多人下载完官网数据集后感到费解的原因。在训练集、验证集和测试集中分别包含436181444张图像
object number:2976

二、数据集特点及难点

在这里插入图片描述
该数据集具有如下检测难点:1. 靠岸舰船较多,呈现舰船密集排列分布的特点,标注框重合度较高;2. 遥感图像背景复杂,待测舰船与近岸纹理等相似性较大;3. 舰船的尺度变化多样等,同一张图像有多种大小不一的舰船;4. 舰船的种类丰富,有几十种不同类别的舰船,造成分类检测的难点;5. 每种类别的舰船数量不多,样本量少导致学习训练不够,鲁棒性较差;6. 云雾遮挡等问题。
研究者可重点从以上几个检测难点来研究算法的改进。

三、数据集标注信息类别分析

通过编写脚本程序对官网下载的HRSC2016舰船数据集中所有图像的标注信息类别进行统计,可以得到以下表格情况*(保证准确)。未保证版权,表格内容不全,需要的朋友请关注后私信我吧。
在这里插入图片描述
从表格中也可以看到该数据集进行了多级分类,共定义了28个类别,一级分类为船,二级粗分类为航母、军舰、商船、潜艇四大类,三级为各型号细分类,之所以会出现这种情况,因为一张图像中有些舰船的类别确实难以分辨具体的舰船种类,所以标注为大类“船”来说比较科学客观有些。但是这对于研究者来说是个很头疼的事情,比如你要进行细分类的检测,但是一张图像中含有未细分的舰船,这样对于模型的训练造成一定的干扰,也对算法的验证评估客观性难以保证。笔者研究时候,仅仅将舰船分为四个类别即为二级分类,同时将含有标注一级分类“船”的图像全部删除,避免造成干扰。最后形成714张遥感图像舰船分类图像,分为民商船、军舰、航母以及潜艇四个类别进行算法研究。


总结

本博客对遥感图像检测数据集HRSC-2016进行数据分析,希望能对遥感图像舰船检测的朋友们有所帮助。有需要帮助的朋友请关注私信我。可获取处理数据集的脚本程序、yolo标注格式转换好的数据集以及完整的标注信息统计表格等。
关注文末后回复“hrsc”即可获取HRSC-2016数据集。

### HRSC2016 数据集下载与使用说明 HRSC2016 是一个用于遥感图像舰船检测的数据集,由西北工业大学于2016年发布[^1]。该数据集提取自 Google Earth,采用了 oriented bounding boxes (OBB) 的标注格式,适用于目标检测中的旋转框任务。 #### 数据集基本信息 - **发布时间**: 2016 年。 - **影像尺寸**: 图像大小范围为 \(300 \times 300\) 至 \(1500 \times 900\)[^1]。 - **图像数量**: 总共包含 1061 张图像,其中训练集、验证集和测试集分别有 436、181 和 444 张图像。 - **对象数量**: 数据集中共有 2976 个标注的目标物体。 #### 下载方式 可以通过以下两种方式进行数据集获取: 1. 官方网站: - 地址: [HRSC2016 官网](https://sites.google.com/site/hrsc2016/)。 2. 百度云盘链接: - 链接地址: [百度云盘](https://pan.baidu.com/s/1iRhVi2RQ4XdTX_sGd4K9fw)- 提取码: `e20l`。 #### 使用说明 为了方便与其他框架兼容,通常需要将 HRSC2016 的标注文件转换为目标检测常用的数据格式(如 DOTA 或 YOLO)。以下是具体操作方法: ##### 标注文件转换 如果希望绘制真实框或将标注文件转换为其他格式,可以参考如下流程: -HRSC2016 的原始标注文件转换为 DOTA 格式,随后可利用 DOTA 提供的脚本工具来可视化 Ground Truth[^2]。 - 对于深度学习模型(如 YOLO),需进一步将其转换为支持旋转框的 YOLO 格式。此过程的具体实现可以在 CSDN 博客中找到详细的教程[^3]。 ##### 数据划分 在实际应用中,可能需要重新划分训练集、验证集和测试集的比例。这一步骤可以根据项目需求调整,但应保持随机性和均衡分布以避免过拟合或欠拟合现象。 ##### 环境配置与注意事项 - 在使用之前,请确认已搭建好所需的深度学习环境(例如 YOLOv5)并安装所有必要依赖库[^4]。 - 查阅官方文档了解数据格式要求以及评估指标设置方法。 - 特别注意遵循数据集的版权和使用条款,尊重原作者的工作成果。 ```python import os # 示例代码:检查本地是否存在解压后的 HRSC2016 文件夹 def check_data_folder(path_to_dataset): if not os.path.exists(path_to_dataset): print(f"Error: The dataset folder {path_to_dataset} does not exist.") else: print(f"The dataset is located at {path_to_dataset}.") check_data_folder("/path/to/your/dataset") # 替换为实际路径 ```
评论 296
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能算法研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值