概率论与数理统计的参数估计内容回顾

1.总体和样本

总体指全体,即所有个体,包含有限全体和无限全体,X表示。

样本指抽样,(X1,X2,...,Xn)指的是样本变量,(x1,x2,...,xn)指的是样本的观测值。

简单随机抽样服从独立同分布。

2.统计量

统计量定义:不含任何未知参数的样本的函数(可以含参数,但参数不能是未知的,可随意构造)

常见统计量:

设样本(X1,X2,...,Xn)来自总体X,

样本均值:\bar{X}=\frac{1}{n}\sum_{i=1}^{n}X_{i} 

未修正的样本方差:S_{0}^{2}=\frac{1}{n}\sum_{i=1}^{n}\left ( X_{i} -\bar{X}\right )^{2}

样本方差:S^{2}=\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}

样本标准差:S=\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}\left ( X_{i}-\bar{X} \right )}

其中   S^{2}=\frac{n}{n-1}S_{0}^{2}

样本k阶原点矩:A_{k}=\frac{1}{n}\sum_{i=1}^{n}X_{i}^{k}

样本k阶中心矩:B_{k}=\frac{1}{n}\sum_{i=1}^{n}\left ( X_{i} -\bar{X}\right )^{k}

协方差:S_{XY} =\frac{1}{n-1}\sum_{i=1}^{n}\left ( X_{i}-\bar{X} \right )\left ( Y_{i} -\bar{Y}\right )

相关系数:\rho =\frac{S_{XY}}{S_{X}S_{Y}}

3.\chi ^{2}分布:

设随机变量X1,X2,...,Xn相互独立,且同服从标准正态分布,则它们的平方和\chi ^{2}=X_{1}^{2}+X_{2}^2+...+X_{n}^{2}  服从自由度为n的\chi ^{2}分布,记为\chi ^{2}= \chi ^{2}\left ( n \right )。自由度n表示独立随机变量的个数。

若X~\chi ^{2}\left ( n \right ),则EX=n,DX=2n

4.t分布:

设X~N(0,1),Y~\chi ^{2}\left ( n \right ),X,Y独立,则称随机变量T=\frac{X}{\sqrt{Y/n}}服从自由度为n的t分布,记作T~t(n).

t分布对称。

当自由度无限增大时,t分布将趋于标准正态分布。

5.F分布:

设X~\chi ^{2}(n1),Y~\chi ^{2}(n2),X与Y相互独立,\frac{X/n_{1}}{Y/n_{2}}\sim F\left ( n_{1},n_{2} \right ).

6.正态总体下的抽样分布:

总体(一个或多个)是正态分布,抽样本构造的统计量的分布。

7.参数估计:

已知一个问题的总体是什么分布,但是总体分布的参数不清楚,抽样获取样本来构造统计量\hat{\theta }\left ( X_{1},X_{2} ,...,X_{n}\right ),使\hat{\theta } =\hat{\theta }\left ( X_{1},X_{2} ,...,X_{n}\right ),进而反解出估计总体分布的参数。

点估计:估计参数的值。

1.矩估计法:用样本的矩估计总体的矩

一阶样本矩:\bar{X}=\frac{1}{n}\sum_{i=1}^{n}X_{i},一阶总体矩:EX

二阶样本矩:A_{2}=\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2},二阶总体矩:EX^{2}

X\sim N\left ( \mu ,\sigma \right ),\left ( X_{1},X_{2},...,X_{n}\right )是样本,求\mu ,\sigma ^{2}矩估计。

一阶总体矩:EX=\mu,一阶样本矩:\bar{X}=\frac{1}{n}\sum_{i=1}^{n}X_{i}。令\hat{\mu }=\bar{X},即解得\hat{\mu }=\frac{1}{n}\sum_{i=1}^{n}X_{i}(后续求矩估计值再把样本观测值代入)。

同理,二阶总体矩:EX^{2}=\mu ^{2}+\sigma ^{2},二阶样本矩:A_{2}=\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}。令A_{2}=EX^{2},解得\hat{\sigma ^{2}}=\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}-(\frac{1}{n}\sum_{i=1}^{n}X_{i})^{2},(后续求矩估计值再把样本观测值代入)。

2.极大似然估计:

基本思想:1.概率大的事件比概率小的事件更容易发生。2.使事件A发生的概率最大的参数值作为其参数估计值。

最大似然函数分离散型和连续型。

离散型:

若总体X\sim P\left ( \lambda \right )\left ( X_{1},X_{2},...,X_{n}\right )为样本,求\lambda的极大似然估计。

总体的概率函数为:P\left ( X=k \right )=\frac{\lambda ^{k}}{k!}e^{-\lambda } \left ( k=0,1,2,3,... \right )

则似然函数为L\left ( \lambda \right )=\bigcap_{i=1}^{n}\frac{\lambda ^{x_{i}}}{x_{i}!}e^{-\lambda },取对数再对\lambda求导,令导数等于0.解得\hat{\lambda }=\frac{1}{n}\sum_{i=1}^{n}X_{i}

连续型同理。

区间估计:估计参数的范围。

P\left ( \hat{\theta _{1}}\leqslant \theta \leqslant \hat{\theta _{2}} \right )=1-\alpha

1-\alpha为置信度(告诉你的),即以1-\alpha的概率落入此区间。

\sqsubset \hat{\theta _{1}},\hat{\theta _{2}}\sqsupset为置信区间,\hat{\theta _{1}}\hat{\theta _{2}}是你要求的。

定义:

1.I=I\left ( T,\theta \right ),其中I的分布F是已知的且与\theta无关,T是已知的,\theta是未知的,我们的目的就是反解\theta的范围。

2.给定1-\alpha,确定F的上\frac{\alpha }{2}分位数,上1-\frac{\alpha }{2}分位数。(分布两边对称是为了保证区间最小)

P\left ( V_{1-\frac{\alpha }{2}}\leqslant I(T,\theta ) \leqslant V_{\frac{\alpha }{2}}\right )=1-\alpha

本博客参考了【《概率论与数理统计》教学视频全集(宋浩)】 https://www.bilibili.com/video/BV1ot411y7mU/?p=61&share_source=copy_web&vd_source=83ca6ae1c32cb23d1c89679c0fe00479

  • 7
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值