概率论与数理统计浙大版知识点个人总结

一、复习回顾

导数相关

s e c x = 1 c o s x secx=\frac{1}{cosx} secx=cosx1

c s c x = 1 s i n x cscx=\frac{1}{sinx} cscx=sinx1

( t a n x ) ′ = s e c 2 x = 1 s i n 2 x (tanx)'=sec^2x=\frac{1}{sin^2x} (tanx)=sec2x=sin2x1

( s e c x ) ′ = ( 1 c o s x ) ′ = s e c x ⋅ t a n x = s i n x c o s 2 x (secx)'=(\frac{1}{cosx})'=secx\cdot tanx=\frac{sinx}{cos^2x} (secx)=(cosx1)=secxtanx=cos2xsinx

( c s c x ) ′ = ( 1 s i n x ) ′ = − c s c x ⋅ c o t x = − c o s x s i n 2 x (cscx)'=(\frac{1}{sinx})'=-cscx\cdot cotx=-\frac{cosx}{sin^2x} (cscx)=(sinx1)=cscxcotx=sin2xcosx

( a r c s i n x ) ′ = 1 1 − s i n 2 x (arcsinx)'=\frac{1}{\sqrt {1-sin^2x}} (arcsinx)=1sin2x 1

( a r c c o s x ) ′ = − 1 1 − s i n 2 x = − ( a r c s i n x ) ′ (arccosx)'=-\frac{1}{\sqrt{1-sin^2x}}=-(arcsinx)' (arccosx)=1sin2x 1=(arcsinx)

( a r c t a n x ) ′ = 1 1 + x 2 (arctanx)'=\frac{1}{1+x^2} (arctanx)=1+x21

( a r c c o t x ) ′ = − 1 1 + x 2 = − ( a r c t a n x ) ′ (arccotx)'=-\frac{1}{1+x^2}=-(arctanx)' (arccotx)=1+x21=(arctanx)

s i n 2 x = 1 − c o s 2 x 2 sin^2x=\frac{1-cos2x}{2} sin2x=21cos2x

c o s 2 x = 1 + c o s 2 x 2 cos^2x=\frac{1+cos2x}{2} cos2x=21+cos2x

s i n 2 x = 2 s i n x c o s x sin2x=2sinxcosx sin2x=2sinxcosx

c o s 2 x = c o s 2 x − s i n 2 x = 2 c o s 2 x − 1 = 1 − 2 s i n 2 x cos2x=cos^2x-sin^2x=2cos^2x-1=1-2sin^2x cos2x=cos2xsin2x=2cos2x1=12sin2x

第一章

若AB=∅,则称A与B为互不相容事件(或互斥),也就是说事件A与B不可能同时发生.

对偶律:略

古典概型(等可能概型)

若某实验E满足

1.有限性:样本空间S={e1, e 2 , … , e n };

2.等可能性:P({e1})=P({e2})=…=P({en}).

则称E为等可能概型也叫古典概型.

有重复排列:共 n k n^k nk种排列;无重复(不放回)排列:共== A n k = n ( n − 1 ) … ( n − k + 1 ) A^k_n=n(n-1)…(n-k+1) Ank=n(n1)(nk+1)==种

组合抽: C n k = A n k k ! = n ! k ! ( n − k ) ! C_n^k=\frac{A_n^k}{k!}=\frac{n!}{k!(n-k)!} Cnk=k!Ank=k!(nk)!n!

条件概率

定义
P { A ∣ B } = P { A B } P { B } P\{A|B\}=\frac{P\{AB\}}{P\{B\}} P{AB}=P{B}P{AB}
事件A、B的乘法公式(利用乘法公式可计算几个事件同时发生的概率.)
P { A B } = P { A ∣ B } P { B } = P { B ∣ A } P { A } P\{AB\}=P\{A|B\}P\{B\}=P\{B|A\}P\{A\} P{AB}=P{AB}P{B}=P{BA}P{A}

P(ABC)= P(C|AB) P(B|A) P(A)

P(A1A2…An)=P (An|A1…An-1) … P(A2|A1) P (A1)

全概率公式和贝叶斯公式

定理1 全概率公式(由原因推结果)

A 1 , … , A n A_1,…, A_n A1,An 是 S 的一个划分,且 P ( A i ) > 0 , ( i = 1 , … , n ) , P(A_i)>0,(i=1,…,n), P(Ai)>0(i1n)则对任何事件B有
P { B } = ∑ i = 1 n P { B ∣ A i } P { A } P\{B\}=\sum_{i=1}^{n}P\{B|A_i\}P\{A\} P{B}=i=1nP{BAi}P{A}
全概率公式例题.png
定理2 贝叶斯公式(由结果推原因)

A 1 , … , A n A_1, … , A_n A1,,An是S的一个划分,且 P ( A i ) > 0 , ( i = 1 , … , n ) P(A_i) > 0, (i=1, … , n) P(Ai)>0,(i1,,n),则对任何事件B,有
P { A j ∣ B } = P { B ∣ A j } P { A j } ∑ i = 1 n P { B ∣ A i } P { A i } , ( j = 1 , . . . , n ) P\{A_j|B\}=\frac{P\{B|A_j\}P\{A_j\}}{\sum_{i=1}^nP\{B|A_i\}P\{A_i\}},(j=1,...,n) P{AjB}=i=1nP{BAi}P{Ai}P{BAj}P{Aj},(j=1,...,n)
在观察到事件B已发生的条件下,寻找导致B发生的每个原因的概率.
贝叶斯公式例题.png

事件独立性

独立与相关.jpg

第二章随机变量及其分布

随机变量:略

分布律性质

p k ≥ 0 , k = 1 , 2 , . . . ; p_k\geq 0,k=1,2,...; pk0,k=1,2,...;

∑ k = 1 ∞ p k = 1 ; \sum_{k=1}^\infty p_k=1; k=1pk=1;

常见分布律

0-1分布

二项分布(X~b(n,p))

设将试验独立重复进行n次,每次试验都只有两种可能的结果A和A,设事件A发生的概率为p,则称这n次试验为n重伯努利试验.

若以X表示n重伯努利试验事件A发生的次数,则称X服从参数为n, p的二项分布.
X ∼ b ( n , p ) X\sim b(n,p) Xb(n,p)

P { X = k } = C n k p k ( 1 − p ) n − k P\{X=k\}=C_n^kp^k(1-p)^{n-k} P{X=k}=Cnkpk(1p)nk

E ( X ) = n p E(X)=np E(X)=np

D ( X ) = n p ( 1 − p ) D(X)=np(1-p) D(X)=np(1p)

泊松分布

X ∼ π ( λ ) X \sim \pi(\lambda) Xπ(λ)

P { X = k } = λ k e − λ k ! , k = 1 , 2 , . . . ( λ > 0 ) P\{X=k\}=\frac{\lambda ^k e^{-\lambda}}{k!},k=1,2,...(\lambda >0) P{X=k}=k!λkeλ,k=1,2,...(λ>0)

E ( X ) = λ E(X)=\lambda E(X)=λ

E ( X 2 ) = E [ X ( X − 1 ) + X ] = E [ X ( X − 1 ) ] + E ( X ) = λ 2 + λ E(X^2)=E[X(X-1)+X]=E[X(X-1)]+E(X) =\lambda ^2 +\lambda E(X2)=E[X(X1)+X]=E[X(X1)]+E(X)=λ2+λ

D ( X ) = λ D(X)=\lambda D(X)=λ

均匀分布

X ∼ U ( a , b ) X \sim U(a,b) XU(a,b)

f ( x ) = { 1 b − a , a < x < b 0 , 其他 f(x)= \begin{cases} \frac{1}{b-a},a<x<b \\ 0\quad ,\quad其他 \end{cases} f(x)={ba1,a<x<b0,其他

E ( X ) = b + a 2 E(X)=\frac{b+a}{2} E(X)=2b+a

D ( X ) = ( b − a ) 2 12 D(X)=\frac{(b-a)^2}{12} D(X)=12(ba)2

E ( X 2 ) = a 2 + a b + b 2 3 E(X^2)=\frac{a^2+ab+b^2}{3} E(X2)=3a2+ab+b2

指数分布

f ( x ) = { ( 1 θ e − x θ ) , x > 0 0 , 其他 f(x)= \begin{cases} (\frac{1}{\theta}e^{-\frac{x}{\theta}}),x>0 \\ 0 \quad\quad,其他 \end{cases} f(x)={(θ1eθx),x>00,其他

E ( X ) = θ E(X)=\theta E(X)=θ

D ( X ) = θ 2 D(X)=\theta ^2 D(X)=θ2

E ( X 2 ) = 2 θ 2 E(X^2)=2\theta ^2 E(X2)=2θ2

正态分布

X ∼ N ( μ , σ 2 ) X \sim N(\mu,\sigma ^2) XN(μ,σ2)

f ( x ) = 1 σ 2 π e ( x − μ ) 2 2 σ 2 , − ∞ < x < ∞ f(x)=\frac{1}{\sigma \sqrt{2\pi}}e^{\frac{(x-\mu)^2}{2\sigma ^2}} ,-\infty <x<\infty f(x)=σ2π 1e2σ2(xμ)2,<x<

E ( X ) = μ E(X)=\mu E(X)=μ

D ( X ) = σ 2 D(X)=\sigma ^2 D(X)=σ2

标准正态分布

μ = 0 , σ = 1 \mu=0,\sigma=1 μ=0,σ=1
X ∼ N ( 0 , 1 ) X\sim N(0,1) XN(0,1)
转化方法,若 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma ^2) XN(μ,σ2),则 Z = X − μ σ ∼ N ( 0 , 1 ) Z=\frac{X-\mu}{\sigma}\sim N(0,1) Z=σXμN(0,1)

分布函数

定义 F ( a ) = P { X < a } F(a)=P\{X<a\} F(a)=P{X<a}

单调不减性:

归一性

任意x, 0 ≤ F ( x ) ≤ 1 0\leq F(x)\leq1 0F(x)1,且
F ( − ∞ ) = lim ⁡ x → − ∞ F ( x ) = 0 , F ( + ∞ ) = lim ⁡ x → + ∞ F ( x ) = 1 ; F(-\infty)=\lim_{x\rightarrow -\infty}F(x)=0,F(+\infty)=\lim_{x\rightarrow +\infty}F(x)=1; F()=xlimF(x)=0,F(+)=x+limF(x)=1;
右连续性:

概率密度

非负性

归一性

与分布函数的联系:
P { a < x ≤ b } = ∫ a b f ( u ) d u = F ( b ) − F ( a ) P\{a<x\leq b\}=\int_a^bf(u)du=F(b)-F(a) P{a<xb}=abf(u)du=F(b)F(a)
导数关系:
d F ( x ) d x = f ( x ) \frac{dF(x)}{dx}=f(x) dxdF(x)=f(x)
几何意义:

面积

各随机变量的概率密度

见上部分常见分布律

随机变量函数的分布

离散型

X ∼ { x 1 x 2 . . . x n p 1 p 2 . . . p n } X \sim \left\{ \begin{array}{ll} x_1 & x_2 & ... & x_n \\ p_1 & p_2 & ... & p_n \\ \end{array} \right\} X{x1p1x2p2......xnpn}


Y = g ( X ) ∼ { g ( x 1 ) g ( x 2 ) . . . g ( x n ) p 1 p 2 . . . p n } Y=g(X)\sim \left\{ \begin{array}{ll} g(x_1) & g(x_2) & ... & g(x_n) \\ p_1 & p_2 & ... & p_n \\ \end{array} \right\} Y=g(X){g(x1)p1g(x2)p2......g(xn)pn}

连续型

举个栗子, X ∼ f X ( x ) = { x 8 , 0 < x < 4 0 , 其他 X\sim f_X(x)=\begin{cases}\frac{x}{8},0<x<4 \\ 0,其他\end{cases} XfX(x)={8x,0<x<40,其他

Y = 2 X + 8 Y=2X+8 Y=2X+8的概率密度

解:
F Y ( y ) = P { Y ≤ y } = P { 2 X + 8 ≤ y } = P { X ≤ y − 8 2 } = F X ( y − 8 2 ) F_Y(y)=P\{Y\leq y\}=P\{2X+8\leq y\} \\ =P\{X\leq \frac{y-8}{2}\}=F_X(\frac{y-8}{2}) FY(y)=P{Yy}=P{2X+8y}=P{X2y8}=FX(2y8)

F Y ( y ) = { y − 8 8 , 0 < y − 8 8 < 4 0 , o t h e r s F_Y(y)=\begin{cases} \frac{y-8}{8},0<\frac{y-8}{8}<4 \\ 0,\quad\quad others \end{cases} FY(y)={8y8,0<8y8<40,others
F Y ( y ) F_Y(y) FY(y)关于 Y Y Y求导数,可得密度函数
f Y ( y ) = { y − 8 32 , 8 < x < 16 0 , o t h e r s f_Y(y)=\begin{cases} \frac{y-8}{32},8<x<16 \\ 0,\quad\quad others \end{cases} fY(y)={32y8,8<x<160,others
概率密度计算公式.png

第三章二维随机变量

联合分布、密度函数

F ( x , y ) = P { ( X ≤ x ) ∩ ( Y ≤ y ) } = P { X ≤ x , Y ≤ y } − ∞ < x , y < ∞ F(x,y)=P\{(X\leq x)\cap (Y\leq y)\}=P\{X\leq x,Y\leq y\} \\ -\infty<x,y<\infty F(x,y)=P{(Xx)(Yy)}=P{Xx,Yy}<x,y<

1.单调非递减

2. ∀ x ∈ R , F ( x , − ∞ ) = 0 ; ∀ y ∈ R , F ( − ∞ , y ) = 0 ; F ( − ∞ , − ∞ ) = 0 \forall x\in R,F(x,-\infty)=0;\quad \forall y \in R,F(-\infty ,y)=0; \quad F(-\infty,-\infty)=0 xR,F(x,)=0;yR,F(,y)=0;F(,)=0

3. F ( ∞ , ∞ ) = 1 F(\infty,\infty)=1 F(,)=1

4.右连续性

联合分布律

针对离散型随机变量
∑ i ≥ 1 ∞ ∑ j ≥ 1 ∞ P i j = 1 \sum_{i\geq1}^{\infty}\sum_{j\geq1}^{\infty}{P_{ij}=1} i1j1Pij=1

二维连续随机变量

对于二维随机变量 (X,Y) ,若存在一个非负可积函数 f(x,y),使对 ∀ ( x , y ) ∈ R 2 , \forall (x,y)\in R^2, (x,y)R2,其分布函数
F ( x , y ) = ∫ − ∞ y ∫ − ∞ x f ( u , v ) d u d v F(x,y)=\int^y_{-\infty} \int_{-\infty}^x f(u,v)dudv F(x,y)=yxf(u,v)dudv
则称 (X,Y) 为二维连续型随机变量 , f(x,y) 为 (X,Y)的概率密度(密度函数 ), 或 X 与 Y 的联合概率密度.

性质:

1.非负性;

2.归一性;(密度函数积分趋近于1,分布函数极限趋近于1)

3.若 f ( x , y ) f(x,y) f(x,y) ( x , y ) ∈ R 2 (x,y)\in R^2 (x,y)R2连续,则有 δ 2 F ( x , y ) δ x δ y = f ( x , y ) \frac{\delta ^2 F(x,y)}{\delta x \delta y}=f(x,y) δxδyδ2F(x,y)=f(x,y)

4.对于任意平面区域 G ∈ R 2 G\in R^2 GR2,
P { ( X , Y ) ∈ G } = ∫ ∫ ( x , y ) ∈ G f ( x , y ) d x d y P\{(X,Y)\in G\}={\int\int}_{(x,y)\in G} f(x,y)dxdy P{(X,Y)G}=∫∫(x,y)Gf(x,y)dxdy
二元随机变量密度函数性质例题.png

二维均匀分布


f ( x , y ) = { 1 S D , ( x , y ) ∈ D ⊂ R 2 0 , o t h e r s f(x,y)= \begin{cases} \frac{1}{S_D},(x,y) \in D \subset R^2 \\\\ 0, others \end{cases} f(x,y)= SD1,(x,y)DR20,others
则称 (X,Y )在区域D上(内 )服从均匀分布.

性质:若(X,Y)在区域D上服从均匀分布,对D内任意区域G,有 P { ( X , Y ) ∈ G } = S G S D P\{(X,Y)\in G\}=\frac{S_G}{S_D} P{(X,Y)G}=SDSG

二维正态分布

二维正态分布.png

分布函数推广

分布函数推广.png

边缘分布(函数)

F X ( x ) = P { X < x } = P { X ≤ x , Y < ∞ } = F X Y ( x , ∞ ) F_X(x)=P\{X<x\}=P\{X\leq x,Y<\infty\}=F_{XY}(x,\infty) FX(x)=P{X<x}=P{Xx,Y<}=FXY(x,)

F Y ( y ) = P { Y < y } = P { X < ∞ , Y ≤ y } = F X Y ( ∞ , y ) F_Y(y)=P\{Y<y\}=P\{X<\infty,Y\leq y \}=F_{XY}(\infty,y) FY(y)=P{Y<y}=P{X<,Yy}=FXY(,y)

边缘密度(函数)

f X ( x ) = ∫ − ∞ + ∞ f ( x , y ) d y f_X(x)=\int_{-\infty}^{+\infty}f(x,y)dy fX(x)=+f(x,y)dy

f Y ( y ) = ∫ − ∞ + ∞ f ( x , y ) d x f_Y(y)=\int_{-\infty}^{+\infty}f(x,y)dx fY(y)=+f(x,y)dx

条件分布

条件概率推广到随机变量,设有两个随机变量X,Y,在给定Y取某个或某些值的条件下,X的概率分布是条件分布。

离散型:

设(X,Y)是二维离散型随机变量,对于固定的j,若 P { Y = y i } > 0 P\{Y=y_i\}>0 P{Y=yi}>0,则称
P { X = x i ∣ Y = y j } = P { X = x i , Y = y j } P { Y = y j } = P i j P j , j = 1 , 2 , . . . P\{X=x_i|Y=y_j\}=\frac{P\{X=x_i,Y=y_j\}}{P\{Y=y_j\}}=\frac{P_{ij}}{P_j},j=1,2,... P{X=xiY=yj}=P{Y=yj}P{X=xi,Y=yj}=PjPij,j=1,2,...
是在 Y = y i Y=y_i Y=yi的条件下随机变量X的条件分布律

连续型:

对任意固定的 y , f Y ( y ) > 0 y,f_Y(y)>0 y,fY(y)>0,则定义已知 Y = y Y=y Y=y的条件下, X X X的条件密度函数为
f X ∣ Y { x ∣ y } = f ( x , y ) f Y ( y ) f_{X|Y}\{x|y\}=\frac{f(x,y)}{f_Y(y)} fXY{xy}=fY(y)f(x,y)

定义在 Y = y Y=y Y=y下, X X X的条件分布函数为
F X ∣ Y ( x ∣ y ) = P { X ≤ x ∣ Y ≤ y } = ∫ − ∞ x f X ∣ Y ( u ∣ y ) d u F_{X|Y}(x|y)=P\{X\leq x|Y\leq y\}=\int^x_{-\infty}f_{X|Y}(u|y)du FXY(xy)=P{XxYy}=xfXY(uy)du
条件概率密度例题.png

相互独立的随机变量

P { X ≤ x , Y ≤ y } = P { X ≤ x } P { Y ≤ y } P\{X\leq x,Y\leq y\}=P\{X\leq x\}P\{Y\leq y\} P{Xx,Yy}=P{Xx}P{Yy}

则称X,Y相互独立

(注:事件A,B相互独立的定义是 P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B)

等价定义
F ( x , y ) = F X ( x ) F Y ( y ) F(x,y)=F_X(x)F_Y(y) F(x,y)=FX(x)FY(y)

f ( x , y ) = f X ( x ) f Y ( y ) f(x,y)=f_X(x)f_Y(y) f(x,y)=fX(x)fY(y)

n维随机变量的边缘分布与独立性

F X 1 , X 2 ( x 1 , x 2 ) = F ( x 1 , x 2 , + ∞ , + ∞ , . . . , + ∞ ) F_{X_1,X_2}(x_1,x_2)=F(x_1,x_2,+\infty,+\infty,...,+\infty) FX1,X2(x1,x2)=F(x1,x2,+,+,...,+)

f X 1 = ∫ − ∞ + ∞ ∫ − ∞ + ∞ . . . ∫ − ∞ + ∞ f ( x 1 , x 2 , . . . , x n ) d x 2 d x 3 . . . d x n f_{X_1}=\int^{+\infty}_{-\infty} \int^{+\infty}_{-\infty}...\int^{+\infty}_{-\infty}f(x_1,x_2,...,x_n)dx_2dx_3...dx_n fX1=++...+f(x1,x2,...,xn)dx2dx3...dxn

f X 1 , X 2 ( x 1 , x 2 ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ . . . ∫ − ∞ + ∞ f ( x 1 , x 2 , . . . , x n ) d x 3 d x 4 . . . d x n f_{X_1,X_2}(x_1,x_2)=\int^{+\infty}_{-\infty}\int^{+\infty}_{-\infty}...\int^{+\infty}_{-\infty}f(x_1,x_2,...,x_n)dx_3dx_4...dx_n fX1,X2(x1,x2)=++...+f(x1,x2,...,xn)dx3dx4...dxn

F ( x 1 , . . . , x n ) = F X 1 ( x 1 ) F X 2 ( x 2 ) . . . F X n ( x n ) F(x_1,...,x_n)=F_{X_1}(x_1)F_{X_2}(x_2)...F_{X_n}(x_n) F(x1,...,xn)=FX1(x1)FX2(x2)...FXn(xn)时称 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn是独立的

多维随机变量函数的分布

X ∼ N ( 0 , 1 ) , Y ∼ N ( 0 , 1 ) X \sim N(0,1),Y\sim N(0,1) XN(0,1),YN(0,1),令 Z = X 2 + Y 2 Z=\sqrt{X^2+Y^2} Z=X2+Y2 ,求 Z Z Z的概率密度函数

解答.jpg

和的分布

若X 与 Y 相互独立,则 Z = X+Y 的密度函数
f Z ( z ) = ∫ − ∞ ∞ f X ( z − y ) f Y ( y ) d y = ∫ − ∞ ∞ f X ( x ) f Y ( z − x ) d x f_Z(z)=\int^{\infty}_{-\infty}f_X(z-y)f_Y(y)dy=\int^{\infty}_{-\infty}f_X(x)f_Y(z-x)dx fZ(z)=fX(zy)fY(y)dy=fX(x)fY(zx)dx
我们称上式为

函数 f X ( x ) 与 f Y ( y ) 的卷积,记作 f X ( x ) ∗ f Y ( y ) f_X(x)与f_Y(y)的卷积,记作f_X(x)*f_Y(y) fX(x)fY(y)的卷积,记作fX(x)fY(y)

因为相互独立, f X ( ) f Y ( ) = f X , Y ( ) f_X()f_Y()=f_{X,Y}() fX()fY()=fX,Y(),上式也可以写成
f Z ( z ) = ∫ − ∞ ∞ f ( x , z − x ) d x f_Z(z)=\int^{\infty}_{-\infty}f(x,z-x)dx fZ(z)=f(x,zx)dx

f Z ( z ) = ∫ − ∞ ∞ f ( z − y , y ) d y f_Z(z)=\int_{-\infty}^{\infty}f(z-y,y)dy fZ(z)=f(zy,y)dy

例题

X ∼ U ( 0 , 1 ) , Y ∼ U ( 0 , 1 ) , X Y 相互独立, Z + X + Y , 求 Z 的概率密度 X\sim U(0,1),Y\sim U(0,1),XY相互独立,Z+X+Y,求Z的概率密度 XU(0,1),YU(0,1),XY相互独立,Z+X+Y,Z的概率密度

分布函数法.jpg

卷积函数法.jpg

定理

X 1 ∼ ( μ 1 , σ 1 2 ) , X 2 ∼ ( μ 2 , σ 2 2 ) , . . . , Z = X 1 + X 2 + . . . , 则 Z ∼ ( μ 1 + μ 2 + . . . , σ 1 2 + σ 2 2 + . . . ) X_1\sim (\mu _1,\sigma _1^2),X_2\sim (\mu _2,\sigma _2^2),...,Z=X_1+X_2+...,则Z\sim (\mu_1+\mu_2+...,\sigma_1^2+\sigma_2^2+...) X1(μ1,σ12),X2(μ2,σ22),...,Z=X1+X2+...,Z(μ1+μ2+...,σ12+σ22+...)

乘除分布

( X , Y ) 二维随机变量,有概率密度 f ( x , y ) , Z = X Y 、 Z = X Y 仍为随机变量 (X,Y)二维随机变量,有概率密度f(x,y),Z=\frac{X}{Y}、Z=XY仍为随机变量 (X,Y)二维随机变量,有概率密度f(x,y),Z=YXZ=XY仍为随机变量
f Y X = ∫ − ∞ ∞ ∣ x ∣ f ( x , x z ) d x f_{\frac{Y}{X}}=\int^{\infty}_{-\infty}|x|f(x,xz)dx fXY=xf(x,xz)dx

f X Y = ∫ − ∞ ∞ ∣ 1 x ∣ f ( x , z x ) d x f_{XY}=\int^{\infty}_{-\infty} |\frac{1}{x}|f(x,\frac{z}{x})dx fXY=x1f(x,xz)dx

若 X 和 Y 相互独立,则可化为 若X和Y相互独立,则可化为 XY相互独立,则可化为
f Y X = ∫ − ∞ ∞ ∣ x ∣ f X ( x ) f Y ( x z ) d x f_{\frac{Y}{X}}=\int^{\infty}_{-\infty}|x|f_X(x)f_Y(xz)dx fXY=xfX(x)fY(xz)dx

f X Y = ∫ − ∞ ∞ ∣ 1 x ∣ f X ( x ) f Y ( z x ) d x f_{XY}=\int^{\infty}_{-\infty}|\frac{1}{x}|f_X(x)f_Y(\frac{z}{x})dx fXY=x1fX(x)fY(xz)dx

max,min分布

M = m a x { X , Y } , N = m i n { X , Y } M=max\{X,Y\},N=min\{X,Y\} M=max{X,Y},N=min{X,Y}
F m a x ( z ) = P { M ≤ z } = P { X ≤ z , Y ≤ z } F_{max}(z)=P\{M\leq z\}=P\{X\leq z,Y\leq z\} Fmax(z)=P{Mz}=P{Xz,Yz}

F m i n ( z ) = P { N ≤ z } = 1 − P { N > z } = 1 − P { X > Z , Y > z } F_{min}(z)=P\{N\leq z\}=1-P\{N>z\}=1-P\{X>Z,Y>z\} Fmin(z)=P{Nz}=1P{N>z}=1P{X>Z,Y>z}

X , Y X,Y X,Y相互独立,
F m a x ( z ) = P { X ≤ z } P { Y ≤ z } = F X ( z ) F Y ( z ) F_{max}(z)=P\{X\leq z\}P\{Y\leq z\}=F_X(z)F_Y(z) Fmax(z)=P{Xz}P{Yz}=FX(z)FY(z)

F m i n ( z ) = 1 − P { X > z } P { Y > z } = 1 − [ 1 − F X ( z ) ] [ 1 − F Y ( z ) ] F_{min}(z)=1-P\{X>z\}P\{Y>z\}=1-[1-F_X(z)][1-F_Y(z)] Fmin(z)=1P{X>z}P{Y>z}=1[1FX(z)][1FY(z)]

随机变量的数字特征

数学期望

对于离散型随机变量, P { X = x i } = p i , i = 1 , 2 , . . . P\{X=x_i\}=p_i,i=1,2,... P{X=xi}=pi,i=1,2,...,若级数 ∑ i = 1 ∞ x i p i 绝对收敛,则 E ( X ) = ∑ i = 1 ∞ x i p i \sum_{i=1}^{\infty}x _ip_i绝对收敛,则E(X)=\sum_{i=1}^{\infty}x _ip_i i=1xipi绝对收敛,则E(X)=i=1xipi

对于连续型随机变量, 若 ∫ − ∞ ∞ x f ( x ) d x 绝对收敛,则 E ( X ) = ∫ − ∞ ∞ x f ( x ) d x 若\int^{\infty}_{-\infty}xf(x)dx绝对收敛,则E(X)=\int^{\infty}_{-\infty}xf(x)dx xf(x)dx绝对收敛,则E(X)=xf(x)dx

复习回顾:(见第二章常见分布律)

若 X ∼ π ( λ ) , 即 P { X = k } = λ k e − λ k ! , k = 1 , 2 , . . . ( λ > 0 ) 若X\sim \pi(\lambda),即P\{X=k\}=\frac{\lambda ^k e^{-\lambda}}{k!},k=1,2,...(\lambda >0) Xπ(λ),P{X=k}=k!λkeλ,k=1,2,...(λ>0)

则 E ( X ) = λ , D ( X ) = λ 则E(X)=\lambda,D(X)=\lambda E(X)=λ,D(X)=λ

若 X ∼ U ( a , b ) , 即 f ( x ) = { 1 b − a , a < x < b 0 , 其他 若X\sim U(a,b),即 f(x)= \begin{cases} \frac{1}{b-a},a<x<b \\ 0\quad ,\quad其他 \end{cases} XU(a,b),f(x)={ba1,a<x<b0,其他

则 E ( X ) = b + a 2 , D ( X ) = ( b − a ) 2 12 则E(X)=\frac{b+a}{2},D(X)=\frac{(b-a)^2}{12} E(X)=2b+a,D(X)=12(ba)2

若 X ∼ 参数为 θ 的指数分布,即 f ( x ) = { ( 1 θ e − x θ ) , x > 0 0 , 其他 若X\sim 参数为\theta 的指数分布,即\\ f(x)= \begin{cases} (\frac{1}{\theta}e^{-\frac{x}{\theta}}),x>0 \\ 0 \quad\quad,其他 \end{cases} X参数为θ的指数分布,即f(x)={(θ1eθx),x>00,其他

E ( X ) = θ , D ( X ) = θ 2 E(X)=\theta,D(X)=\theta^2 E(X)=θ,D(X)=θ2

若 X ∼ N ( μ , σ 2 ) ,即 f ( x ) = 1 σ 2 π e ( x − μ ) 2 2 σ 2 , − ∞ < x < ∞ 若X\sim N(\mu,\sigma ^2),即\\ f(x)=\frac{1}{\sigma \sqrt{2\pi}}e^{\frac{(x-\mu)^2}{2\sigma ^2}} ,-\infty <x<\infty XN(μ,σ2),即f(x)=σ2π 1e2σ2(xμ)2,<x<

则 E ( X ) = μ , D ( X ) = σ 2 则E(X)=\mu,D(X)=\sigma^2 E(X)=μ,D(X)=σ2

随机变量函数的期望

X 是随机离散变量, P { X = x k } = p k , k = 1 , 2 , . . . ,若(略)收敛,则 X是随机离散变量,P\{X=x_k\}=p_k,k=1,2,...,若(略)收敛,则 X是随机离散变量,P{X=xk}=pk,k=1,2,...,若(略)收敛,则
E ( Y ) = E [ g ( X ) ] = ∑ k = 1 ∞ g ( x k ) p k . E(Y)=E[g(X)]=\sum^{\infty}_{k=1}g(x_k)p_k. E(Y)=E[g(X)]=k=1g(xk)pk.

X 是连续随机变量,概率密度 f ( x ) ,若(略)收敛,则 X是连续随机变量,概率密度f(x),若(略)收敛,则 X是连续随机变量,概率密度f(x),若(略)收敛,则
E ( Y ) = E [ g ( x ) ] = ∫ − ∞ ∞ g ( x ) f ( x ) d x . E(Y)=E[g(x)]=\int^{\infty}_{-\infty}g(x)f(x)dx. E(Y)=E[g(x)]=g(x)f(x)dx.
X , Y 是连续随机变量,概率密度 f ( X , Y ) ,若 Z = g ( X , Y ) ,则 X,Y是连续随机变量,概率密度f(X,Y),若Z=g(X,Y),则 X,Y是连续随机变量,概率密度f(X,Y),若Z=g(X,Y),则
E ( Z ) = E [ g ( X , Y ) ] = ∫ − ∞ ∞ ∫ − ∞ ∞ g ( x , y ) f ( x , y ) d x d y E(Z)=E[g(X,Y)]=\int^{\infty}_{-\infty}\int^{\infty}_{-\infty}g(x,y)f(x,y)dxdy E(Z)=E[g(X,Y)]=g(x,y)f(x,y)dxdy

二维随机变量的期望

对于 f X , Y ( x , y ) = { ? ? ? , ( x , y ) ∈ D , 0 , 其他 f_{X,Y}(x,y)=\begin{cases}???,(x,y)\in D,\\ 0,其他\end{cases} fX,Y(x,y)={???,(x,y)D,0,其他,有
E ( X ) = ∫ ∫ x f ( x , y ) d x d y E ( Y ) = ∫ ∫ y f ( x , y ) d x d y E ( X , Y ) = ∫ ∫ x y f ( x , y ) d x d y E(X)=\int\int xf(x,y)dxdy\\ E(Y)=\int\int yf(x,y)dxdy\\ E(X,Y)=\int\int xyf(x,y)dxdy E(X)=∫∫xf(x,y)dxdyE(Y)=∫∫yf(x,y)dxdyE(X,Y)=∫∫xyf(x,y)dxdy

数学期望的性质

$若C是常数,X,Y是随机变量,则
E ( C ) = C E ( X + C ) = E ( X ) + C E ( C X ) = C E ( X ) E ( X + Y ) = E ( X ) + E ( Y ) E ( X ) = E ( X ) 若 X , Y 相互独立,则 E ( X Y ) = E ( X ) E ( Y ) E(C)=C\\ E(X+C)=E(X)+C\\ E(CX)=CE(X)\\ E(X+Y)=E(X)+E(Y)\\ E(\sqrt{X})=\sqrt{E(X)}\\ 若X,Y相互独立,则E(XY)=E(X)E(Y) E(C)=CE(X+C)=E(X)+CE(CX)=CE(X)E(X+Y)=E(X)+E(Y)E(X )=E(X) X,Y相互独立,则E(XY)=E(X)E(Y)

方差

定义: D ( X ) = E { [ X − E ( X ) ] 2 } ,展开为 D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 ,方差的记号是 σ 2 ,不是 σ , σ 是标准差的记号 定义:D(X)=E\{[X-E(X)]^2\},展开为D(X)=E(X^2)-[E(X)]^2,方差的记号是\sigma ^2,不是\sigma ,\sigma是标准差的记号 定义:D(X)=E{[XE(X)]2},展开为D(X)=E(X2)[E(X)]2,方差的记号是σ2,不是σ,σ是标准差的记号

性质
C 是常数, X , Y 是随机变量,则 D ( C ) = 0 D ( C X ) = C 2 D ( X ) D ( ( X + C ) = D ( X ) D ( X + Y ) = D ( X ) + D ( Y ) + 2 E { ( X − E ( X ) ) ( Y − E ( Y ) ) } = D ( X ) + D ( Y ) + 2 C o v ( X , Y ) 若 X , Y 相互独立,则 D ( X + Y ) = D ( X ) + D ( Y ) C是常数,X,Y是随机变量,则\\ D(C)=0\\ D(CX)=C^2D(X)\\ D((X+C)=D(X)\\ D(X+Y)=D(X)+D(Y)+2E\{(X-E(X))(Y-E(Y))\}\\=D(X)+D(Y)+2Cov(X,Y)\\ 若X,Y相互独立,则D(X+Y)=D(X)+D(Y) C是常数,X,Y是随机变量,则D(C)=0D(CX)=C2D(X)D((X+C)=D(X)D(X+Y)=D(X)+D(Y)+2E{(XE(X))(YE(Y))}=D(X)+D(Y)+2Cov(X,Y)X,Y相互独立,则D(X+Y)=D(X)+D(Y)

切比雪夫不等式

P { ∣ X − μ ∣ ≥ ϵ } ≤ σ 2 ϵ 2 P\{|X-\mu|\geq \epsilon \}\leq \frac{\sigma ^2}{\epsilon^2} P{Xμϵ}ϵ2σ2

P { ∣ X − μ ∣ < ϵ } ≥ 1 − σ 2 ϵ 2 P\{|X-\mu|<\epsilon\}\geq1-\frac{\sigma^2}{\epsilon^2} P{Xμ<ϵ}1ϵ2σ2

协方差和相关系数

定义 协方差 C o v ( X , Y ) = E { [ X − E ( X ) ] [ Y − E ( Y ) ] } , 相关系数 ρ = C o v ( X , Y ) D ( X ) D ( Y ) 协方差Cov(X,Y)=E\{[X-E(X)][Y-E(Y)]\},相关系数\rho=\frac{Cov(X,Y)}{\sqrt{D(X)D(Y)}} 协方差Cov(X,Y)=E{[XE(X)][YE(Y)]},相关系数ρ=D(X)D(Y) Cov(X,Y)
C o v ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) Cov(X,Y)=E(XY)-E(X)E(Y) Cov(X,Y)=E(XY)E(X)E(Y)
若X,Y不相关,则 C o v ( X , Y ) = 0 ; ρ = 0 表明 X , Y 线性不相关 Cov(X,Y)=0;\rho=0表明X,Y线性不相关 Cov(X,Y)=0ρ=0表明X,Y线性不相关,X,Y相互独立是X,Y不相关的一种特殊情况

二维正态分布的不相关性与独立性等价;

矩、协方差矩阵

X 的 k 阶原点矩( k 阶矩): E ( X k ) , k = 1 , 2 , . . . X的k阶原点矩(k阶矩):E(X^k),k=1,2,... Xk阶原点矩(k阶矩):E(Xk),k=1,2,...

X 的 k 阶中心矩: E { [ X − E ( X ) ] k } , k = 1 , 2... X的k阶中心矩:E\{[X-E(X)]^k\},k=1,2... Xk阶中心矩:E{[XE(X)]k},k=1,2...

X , Y 的 k + l 阶混合矩: E ( X k Y l ) , k , l = 1 , 2 , . . . X,Y的k+l阶混合矩:E(X^kY^l),k,l=1,2,... X,Yk+l阶混合矩:E(XkYl),k,l=1,2,...

X , Y 的 k + l 阶混合中心矩: E { [ X − E ( X ) ] k [ Y − E ( Y ) ] l } , k , l = 1 , 2 , . . . X,Y的k+l阶混合中心矩:E\{[X-E(X)]^k[Y-E(Y)]^l\},k,l=1,2,... X,Yk+l阶混合中心矩:E{[XE(X)]k[YE(Y)]l},k,l=1,2,...

协方差矩阵

n 维随机变量 ( X 1 , X 2 , . . . , X n ) 的 n维随机变量(X_1,X_2,...,X_n)的 n维随机变量(X1,X2,...,Xn)二阶混合中心矩 c i j = C o v ( X i , X j ) , i , j = 1 , 2 , . . . , n c_{ij}=Cov(X_i,X_j),i,j=1,2,...,n cij=Cov(Xi,Xj),i,j=1,2,...,n若都存在,则称矩阵
KaTeX parse error: Undefined control sequence: \matrix at position 11: C=\left[ \̲m̲a̲t̲r̲i̲x̲{ c_{11}&c_{12}…
为 n 维随机变量( X 1 , X 2 , . . . , X n ) 的协方差矩阵 为n维随机变量(X_1,X_2,...,X_n)的协方差矩阵 n维随机变量(X1X2...,Xn)的协方差矩阵

大数定律、中心极限定理(极简)

大数定律

弱大数定理(辛勤大数定理)
X 1 , X 2 , . . . , X n 独立同分布, E ( X i ) = μ , 则序列 X ˉ = 1 n ∑ i = 1 n X i 依概率收敛于 μ X_1,X_2,...,X_n独立同分布,E(X_i)=\mu,则序列\bar{X}=\frac{1}{n}\sum^n_{i=1}X_i依概率收敛于\mu X1,X2,...,Xn独立同分布,E(Xi)=μ,则序列Xˉ=n1i=1nXi依概率收敛于μ
依概率收敛于就是 lim ⁡ n → ∞ P { ∣ 1 n ∑ k = 1 n X i − μ ∣ < ϵ } = 1 \lim_{n\rightarrow \infty}P\{|\frac{1}{n}\sum^n_{k=1}X_i-\mu|<\epsilon\}=1 limnP{n1k=1nXiμ<ϵ}=1

伯努利大数定律
f A 是 n 次独立重复实验 A 发生的次数, p 是 A 发生的概率, ϵ > 0 , 则 lim ⁡ n → ∞ P { ∣ f A n − p ∣ < ϵ } = 1 f_A是n次独立重复实验A发生的次数,p是A发生的概率,\epsilon >0,则\\ \lim_{n\rightarrow\infty}P\{|\frac{f_A}{n}-p|<\epsilon\}=1 fAn次独立重复实验A发生的次数,pA发生的概率,ϵ>0,nlimP{nfAp<ϵ}=1
这表明n充分大时频率趋近于概率

中心极限定理(极简)

独立同分布的中心极限定理

独立同分布的随机变量 X 1 , X 2 , . . . , X n 和的标准化变量为 ∑ k = 1 n X k − n μ n σ 独立同分布的随机变量X_1,X_2,...,X_n和的标准化变量为\\ \frac{\sum^n_{k=1}X_k-n\mu}{\sqrt{n}\sigma} 独立同分布的随机变量X1,X2,...,Xn和的标准化变量为n σk=1nXknμ

这个标准化变量在 n 充分大时近似服从 N ( 0 , 1 ) 这个标准化变量在n充分大时近似服从N(0,1) 这个标准化变量在n充分大时近似服从N(0,1)

由于
∑ k = 1 n X k − n μ n σ = 1 n ∑ k = 1 n X k − μ σ n = X ˉ − μ σ n \frac{\sum^n_{k=1}X_k-n\mu}{\sqrt{n}\sigma}=\frac{\frac{1}{n}\sum^n_{k=1}X_k-\mu}{\frac{\sigma}{\sqrt{n}}} =\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}} n σk=1nXknμ=n σn1k=1nXkμ=n σXˉμ
故n充分大时,
X ˉ − μ σ n ∼ 近似地 ∼ N ( 0 , 1 ) 或 X ˉ ∼ 近似地 ∼ N ( μ , σ 2 / n ) \frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}}\sim^{近似地}\sim N(0,1)或\bar{X}\sim^{近似地}\sim N(\mu, \sigma^2/n) n σXˉμ近似地N(0,1)Xˉ近似地N(μ,σ2/n)

李雅普诺夫定理

若定义 B n B_n Bn
B n 2 = ∑ k = 1 n σ k 2 B_n^2=\sum^n_{k=1}\sigma^2_k Bn2=k=1nσk2
在定理的条件下,随机变量
Z n = ∑ k = 1 n X k − ∑ k = 1 n μ k B n Z_n=\frac{\sum^n_{k=1}X_k-\sum^n_{k=1}\mu_k}{B_n} Zn=Bnk=1nXkk=1nμk
当n很大时近似服从正态分布N(0,1)

棣莫弗-拉普拉斯定理

正态分布是二项分布的极限分布

例: 一个加法器同时收到 20 个噪声电压 V k ( k = 1 , 2 , 3 , . . . , 20 ) ,设它们是相互独立的随机变量,且都在区间 ( 0 , 10 ) 上服从均匀分布, 一个加法器同时收到20个噪声电压V_k(k=1,2,3,...,20),设它们是相互独立的随机变量,且都在区间(0,10)上服从均匀分布, 一个加法器同时收到20个噪声电压Vk(k=1,2,3,...,20),设它们是相互独立的随机变量,且都在区间(0,10)上服从均匀分布,

记 V = ∑ k = 1 20 V k ,求 P { V > 105 } 的近似值 记V=\sum^{20}_{k=1}V_k,求P\{V>105\}的近似值 V=k=120Vk,求P{V>105}的近似值

解:

易知 μ = E ( V k ) = 5 , σ 2 = D ( V k ) = 100 / 12 , ( k = 1 , 2 , . . . 20 ) ,由 ∑ k = 1 n X k − n μ n σ ∼ N ( 0 , 1 ) 知随机变量 易知\mu=E(V_k)=5,\sigma^2=D(V_k)=100/12,(k=1,2,...20),由\frac{\sum^n_{k=1}X_k-n\mu}{\sqrt{n}\sigma}\sim N(0,1)知随机变量 易知μ=E(Vk)=5,σ2=D(Vk)=100/12,(k=1,2,...20),由n σk=1nXknμN(0,1)知随机变量
Z = ∑ k = 1 n V k − 20 × 5 20 / 100 / 12 = V − 20 × 5 20 / 100 / 12 ∼ N ( 0 , 1 ) Z=\frac{\sum^n_{k=1}V_k-20\times5}{\sqrt{20}/\sqrt{100/12}}=\frac{V-20\times5}{\sqrt{20}/\sqrt{100/12}}\sim N(0,1) Z=20 /100/12 k=1nVk20×5=20 /100/12 V20×5N(0,1)
于是
P { V > 105 } = P { V − 20 × 5 20 / 100 / 12 > 105 − 20 × 5 20 / 100 / 12 } = P { V − 100 20 / 100 / 12 > 0.387 } = 1 − P { V − 100 20 / 100 / 12 ≤ 0.387 } = 1 − Φ ( 0.387 ) = 0.348 P\{V>105\}=P\{\frac{V-20\times5}{\sqrt{20}/\sqrt{100/12}}>\frac{105-20\times5}{\sqrt{20}/\sqrt{100/12}}\}\\ =P\{\frac{V-100}{\sqrt{20}/\sqrt{100/12}}>0.387\}\quad\\ =1-P\{\frac{V-100}{\sqrt{20}/\sqrt{100/12}}\leq0.387\}\\ =1-\Phi(0.387)\quad\quad\quad\quad\quad\quad\quad\quad\quad\\ =0.348\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad P{V>105}=P{20 /100/12 V20×5>20 /100/12 10520×5}=P{20 /100/12 V100>0.387}=1P{20 /100/12 V1000.387}=1Φ(0.387)=0.348
理的条件下,随机变量
Z n = ∑ k = 1 n X k − ∑ k = 1 n μ k B n Z_n=\frac{\sum^n_{k=1}X_k-\sum^n_{k=1}\mu_k}{B_n} Zn=Bnk=1nXkk=1nμk
当n很大时近似服从正态分布N(0,1)

棣莫弗-拉普拉斯定理

正态分布是二项分布的极限分布

例: 一个加法器同时收到 20 个噪声电压 V k ( k = 1 , 2 , 3 , . . . , 20 ) ,设它们是相互独立的随机变量,且都在区间 ( 0 , 10 ) 上服从均匀分布, 一个加法器同时收到20个噪声电压V_k(k=1,2,3,...,20),设它们是相互独立的随机变量,且都在区间(0,10)上服从均匀分布, 一个加法器同时收到20个噪声电压Vk(k=1,2,3,...,20),设它们是相互独立的随机变量,且都在区间(0,10)上服从均匀分布,

记 V = ∑ k = 1 20 V k ,求 P { V > 105 } 的近似值 记V=\sum^{20}_{k=1}V_k,求P\{V>105\}的近似值 V=k=120Vk,求P{V>105}的近似值

解:

易知 μ = E ( V k ) = 5 , σ 2 = D ( V k ) = 100 / 12 , ( k = 1 , 2 , . . . 20 ) ,由 ∑ k = 1 n X k − n μ n σ ∼ N ( 0 , 1 ) 知随机变量 易知\mu=E(V_k)=5,\sigma^2=D(V_k)=100/12,(k=1,2,...20),由\frac{\sum^n_{k=1}X_k-n\mu}{\sqrt{n}\sigma}\sim N(0,1)知随机变量 易知μ=E(Vk)=5,σ2=D(Vk)=100/12,(k=1,2,...20),由n σk=1nXknμN(0,1)知随机变量
Z = ∑ k = 1 n V k − 20 × 5 20 / 100 / 12 = V − 20 × 5 20 / 100 / 12 ∼ N ( 0 , 1 ) Z=\frac{\sum^n_{k=1}V_k-20\times5}{\sqrt{20}/\sqrt{100/12}}=\frac{V-20\times5}{\sqrt{20}/\sqrt{100/12}}\sim N(0,1) Z=20 /100/12 k=1nVk20×5=20 /100/12 V20×5N(0,1)
于是
P { V > 105 } = P { V − 20 × 5 20 / 100 / 12 > 105 − 20 × 5 20 / 100 / 12 } = P { V − 100 20 / 100 / 12 > 0.387 } = 1 − P { V − 100 20 / 100 / 12 ≤ 0.387 } = 1 − Φ ( 0.387 ) = 0.348 P\{V>105\}=P\{\frac{V-20\times5}{\sqrt{20}/\sqrt{100/12}}>\frac{105-20\times5}{\sqrt{20}/\sqrt{100/12}}\}\\ =P\{\frac{V-100}{\sqrt{20}/\sqrt{100/12}}>0.387\}\quad\\ =1-P\{\frac{V-100}{\sqrt{20}/\sqrt{100/12}}\leq0.387\}\\ =1-\Phi(0.387)\quad\quad\quad\quad\quad\quad\quad\quad\quad\\ =0.348\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad P{V>105}=P{20 /100/12 V20×5>20 /100/12 10520×5}=P{20 /100/12 V100>0.387}=1P{20 /100/12 V1000.387}=1Φ(0.387)=0.348

抽样分布

χ 2 分布 \chi^2 分布 χ2分布

待更新

t 分布 t分布 t分布

待更新

F 分布 F分布 F分布

待更新

正态总体的样本均值与样本方差的分布 正态总体的样本均值与样本方差的分布 正态总体的样本均值与样本方差的分布

待更新

参数估计

待更新

  • 31
    点赞
  • 49
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值