Python训练营打卡Day33

DAY 33 简单的神经网络

知识点回顾:
1.PyTorch和cuda的安装
2.查看显卡信息的命令行命令(cmd中使用)
3.cuda的检查
4.简单神经网络的流程
a.数据预处理(归一化、转换成张量)
b.模型的定义
i.继承nn.Module类
ii.定义每一个层
iii.定义前向传播流程
c.定义损失函数和优化器
d.定义训练流程
e.可视化loss过程
@浙大疏锦行


DAY33

默认大家已经有一定的神经网络基础,该部分已经在复试班的深度学习部分介绍完毕,如果没有,你需要自行了解下MLP的概念。

你需要知道

  1. 梯度下降的思想
  2. 激活函数的作用
  3. 损失函数的作用
  4. 优化器
  5. 神经网络的概念

神经网络由于内部比较灵活,所以封装的比较浅,可以对模型做非常多的改进,而不像机器学习三行代码固定。

PyTorch的安装

我们后续完成深度学习项目中,主要使用的包为pytorch,所以需要安装,你需要去配置一个新的环境。

未来在复现具体项目时候,新环境命名最好是python版本_pytorch版本_cuda版本,例如 py3.10_pytorch2.0_cuda12.2 ,因为复杂项目对运行环境有要求,所以需要安装对应版本的包。

我们目前主要不用这么严格,先创建一个命名为DL的新环境即可,也可以沿用之前的环境

conda create -n DL python=3.8
conda env list 
conda activate DL
conda install jupyter (如果conda无法安装jupyter就参考环境配置文档的pip安装方法)
pip insatll scikit-learn
然后对着下列教程安装pytorch


深度学习主要是简单的并行计算,所以gpu优势更大,简单的计算cpu发挥不出来他的价值,我们之前说过显卡和cpu的区别:

  1. cpu是1个博士生,能够完成复杂的计算,串行能力强。
  2. gpu是100个小学生,能够完成简单的计算,人多计算的快。

这里的gpu指的是英伟达的显卡,它支持cuda可以提高并行计算的能力。

如果你是amd的显卡、苹果的电脑,那样就不需要安装cuda了,直接安装pytorch-gpu版本即可。cuda只支持nvidia的显卡。

  1. 怕麻烦直接安装cpu版本的pytorch,跑通了用云服务器版本的pytorch-gpu
  2. gpu的pytorch还需要额外安装cuda cudnn组件

准备工作

可以在你电脑的cmd中输入nvidia-smi来查看下显卡信息

其中最重要的2个信息,分别是:

  1. 显卡目前驱动下最高支持的cuda版本,12.7
  2. 显存大小,12288 MiB ÷ 1024 = 12

PS:之所以输入这个命令,可以弹出这些信息,是因为为系统正确安装了 NVIDIA 显卡驱动程序,并且相关路径被添加到了环境变量中。如果你不是英伟达的显卡,自然无法使用这个命令。

import torch
torch.cuda
import torch

# 检查CUDA是否可用
if torch.cuda.is_available():
    print("CUDA可用!")
    # 获取可用的CUDA设备数量
    device_count = torch.cuda.device_count()
    print(f"可用的CUDA设备数量: {device_count}")
    # 获取当前使用的CUDA设备索引
    current_device = torch.cuda.current_device()
    print(f"当前使用的CUDA设备索引: {current_device}")
    # 获取当前CUDA设备的名称
    device_name = torch.cuda.get_device_name(current_device)
    print(f"当前CUDA设备的名称: {device_name}")
    # 获取CUDA版本
    cuda_version = torch.version.cuda
    print(f"CUDA版本: {cuda_version}")
else:
    print("CUDA不可用。")

这里的cuda版本是实际安装的cuda驱动的版本,需要小于显卡所支持的最高版本
上述这段代码,可以以后不断复用,检查是否有pytorch及cuda相关信息,我们今天先用cpu训练,不必在意,有没有cuda不影响。

数据的准备

# 仍然用4特征,3分类的鸢尾花数据集作为我们今天的数据集
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import numpy as np

# 加载鸢尾花数据集
iris = load_iris()
X = iris.data  # 特征数据
y = iris.target  # 标签数据
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 打印下尺寸
print(X_train.shape)
print(y_train.shape)
print(X_test.shape)
print(y_test.shape)
# 归一化数据,神经网络对于输入数据的尺寸敏感,归一化是最常见的处理方式
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test) #确保训练集和测试集是相同的缩放
# 将数据转换为 PyTorch 张量,因为 PyTorch 使用张量进行训练
# y_train和y_test是整数,所以需要转化为long类型,如果是float32,会输出1.0 0.0
X_train = torch.FloatTensor(X_train)
y_train = torch.LongTensor(y_train)
X_test = torch.FloatTensor(X_test)
y_test = torch.LongTensor(y_test)

模型架构定义

定义一个简单的全连接神经网络模型,包含一个输入层、一个隐藏层和一个输出层。

定义层数+定义前向传播顺序

import torch
import torch.nn as nn
import torch.optim as optim
class MLP(nn.Module): # 定义一个多层感知机(MLP)模型,继承父类nn.Module
    def __init__(self): # 初始化函数
        super(MLP, self).__init__() # 调用父类的初始化函数
 # 前三行是八股文,后面的是自定义的

        self.fc1 = nn.Linear(4, 10)  # 输入层到隐藏层
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(10, 3)  # 隐藏层到输出层
# 输出层不需要激活函数,因为后面会用到交叉熵函数cross_entropy,交叉熵函数内部有softmax函数,会把输出转化为概率

    def forward(self, x):
        out = self.fc1(x)
        out = self.relu(out)
        out = self.fc2(out)
        return out

# 实例化模型
model = MLP()

其实模型层的写法有很多,relu也可以不写,在后面前向传播的时候计算下即可,因为relu其实不算一个层,只是个计算而已。

def forward(self,x): #前向传播
    x=torch.relu(self.fc1(x)) #激活函数
    x=self.fc2(x) #输出层不需要激活函数,因为后面会用到交叉熵函数cross_entropy
    return x

模型训练(CPU版本)

### 定义损失函数和优化器
# 分类问题使用交叉熵损失函数
criterion = nn.CrossEntropyLoss()

# 使用随机梯度下降优化器
optimizer = optim.SGD(model.parameters(), lr=0.01)

# # 使用自适应学习率的化器
# optimizer = optim.Adam(model.parameters(), lr=0.001)

开始循环训练

实际上在训练的时候,可以同时观察每个epoch训练完后测试集的表现:测试集的loss和准确度

# 训练模型
num_epochs = 20000 # 训练的轮数

# 用于存储每个 epoch 的损失值
losses = []

for epoch in range(num_epochs): # range是从0开始,所以epoch是从0开始
    # 前向传播
    outputs = model.forward(X_train)   # 显式调用forward函数
    # outputs = model(X_train)  # 常见写法隐式调用forward函数,其实是用了model类的__call__方法
    loss = criterion(outputs, y_train) # output是模型预测值,y_train是真实标签

    # 反向传播和优化
    optimizer.zero_grad() #梯度清零,因为PyTorch会累积梯度,所以每次迭代需要清零,梯度累计是那种小的bitchsize模拟大的bitchsize
    loss.backward() # 反向传播计算梯度
    optimizer.step() # 更新参数

    # 记录损失值
    losses.append(loss.item())

    # 打印训练信息
    if (epoch + 1) % 100 == 0: # range是从0开始,所以epoch+1是从当前epoch开始,每100个epoch打印一次
        print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

如果你重新运行上面这段训练循环,模型参数、优化器状态和梯度会继续保留,导致训练结果叠加,模型参数和优化器状态(如动量、学习率等)不会被重置。这会导致训练从之前的状态继续,而不是从头开始

### 可视化结果
import matplotlib.pyplot as plt
# 可视化损失曲线
plt.plot(range(num_epochs), losses)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training Loss over Epochs')
plt.show()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值