python 中np.squeeze的用法

numpy.squeeze()函数用于移除数组中尺寸为1的轴,可以使数据更紧凑。如果不指定axis,会移除所有单维度;若指定axis,则只移除指定轴上的单维度。例如,一个(1,4,2)的数组经过squeeze后可变为(4,2),在处理图像坐标等场景中有用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

当处理数组时,有时候我们希望将形状中维度为1的维度去除,使得数组更加紧凑。np.squeeze函数可以实现这个目的。

1函数参数

numpy.squeeze(a, axis=None)

其中,a表示输入的数组,axis表示要去除的维度的索引或索引列表。如果不指定axis参数,则会去除所有维度为1的维度。

2.常见用法

1.去除所有维度为1的维度

a = np.array([[[1, 2, 3]]])
b = np.squeeze(a)
print(b.shape)

#输出:(3,)

详细例子:

import numpy as np

approx = np.array([[[10, 20]], [[30, 40]], [[50, 60]], [[70, 80]]])
print(approx.shape)  # 输出:(1, 4, 2)

corner_points = np.squeeze(approx)
print(corner_points.shape)  # 输出:(4, 2)

print(corner_points)

输出:

(1, 4, 2)
(4, 2)
[[10 20]
 [30 40]
 [50 60]
 [70 80]]

2.去除指定维度的1维度

a = np.array([[[1, 2, 3]]])
b = np.squeeze(a, axis=0)
print(b.shape)  

# 输出:(1, 3)

c = np.squeeze(a, axis=1)
print(c.shape)  

# 输出:(1, 3)

3.当维度不为1时,不会有任何改变

a = np.array([[1, 2, 3][1,2,3]])
b = np.squeeze(a)
print(b.shape)  

# 输出:(2, 3)

通过使用np.squeeze函数,可以方便地去除数组中不必要的维度,使得数组更加紧凑。在处理轮廓坐标等情况下,它常用于将多维数组转换为一维数组形式。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值