5个问题,理性看待DeepSeek带来的影响

1、为何DeepSeek如此受欢迎?

除了大家所熟知的通过算法优化把训练和推理价格打下来了、开源属性、国产之光大模型、各路媒体不遗余力的宣传扩大其效应,其中还有一个更重要的原因,他发布的时间点很好。他是第一个把复现MoE、o1作为开源发出来了,胜在做的早,发布时间得当,引爆了大家的眼球。但是现阶段DeepSeek还不是最好的,受限于资源有限,只能把有限的资源放在最亮眼的地方,但后续有没有精力去做得更好未知,其未来进步空间还很大。

2、为什么DeepSeek的方法没有在大厂出现?

还是一个公司聚焦的问题。大公司也在做模型,但同时也在做其他的,把算力分出去投入到了其他更有价值的地方。而DeepSeek做的事情很聚焦,所以容易做出成果,并且其现阶段的核心战略并不是要商业化盈利,而是要推动AI整体的发展,所以其模型开源带来如此大的效应也与公司价值观有关。

3、大家会从闭源模型纷纷迁移到DeepSeek吗?

目前看还没出现大批迁移,因为领先模型的coding指令遵循能力是比较有利的,但不确定这一优势在未来是否会被攻克。开发者角度来看,例如Claude-3.5-Sonnet是做了tool use专门训练,对于做agent非常有利,但DeepSeek模型暂时没有提供,所以说DeepSeek未来的进步空间很大。而对于大模型应用者,如果原来选择的是OpenAI的o1大模型,DeepSeek即使出现了,也没有说带来颠覆性的质量提高和额外的价值,而且现在OpenAI的大模型也降价了,未来还会持续推出更好的大模型,但是DeepSeek未来都是未知的,所以不会轻易更换。

4、未来大模型的趋势,开源 or 闭源?

DeepSeek的出现,掀起了一场开源 VS 闭源大战。DeepSeek效应,本来使OpenAI等企业把好的模型藏在后面,但DeepSeek拿出来之后,其他AI公司好模型可能也藏不住了,但领先的模型都没发布。DeepSeek成本上做了很多优化,Amazon等还没有看到因此做出的改变,还是按照既定的计划做,目前是一个共存的状态。开源和闭源模型并不矛盾,高校和小Lab应该会优先选择DeepSeek,不会对云厂商有竞争,因为云厂商对开源、闭源都是支持的,生态不会改变,目前也是共存状态。DeepSeek在tool use等层面还没有像Anthropic这么成熟,并且Anthropic已经花了很多时间在AI安全上,DeepSeek如果长期希望得到欧美市场的认可,是需要考虑的。但开源对整个市场的margin是有控制的,如果开源能做到闭源的95%,如果闭源太贵,那完全就可以用开源来做;如果开源和闭源能力差不多,那对闭源是一个很大的挑战。

5、AI的发展与算力的关系?

其实DeepSeek做的事,还是一个追赶者的姿态,毕竟是有了OpenAI的o1之后,才有了后续的一些事,可以说DeepSeek也算是站在了巨人的肩膀上。一个新技术在探索阶段,试错成本很高,人力和投资成本都很高,因为路线是不明确的,结果也是未知的。而DeepSeek从o1到r1,背后的技术探索确实也很不容易,但是起码至少知道最后是怎么样的一个结果,中间的特征词也可以观察到,可以一开始就对着别人的最终形态去做,比较有方向感。如果是在前线探索下一代,是最费资源的,而追赶者不需要承担探索,但永远也只是追赶。

DeepSeek的事情和算力没有太大关系,更多让美国觉得中国比较厉害,比较有效率,英伟达的软肋不在DeepSeek,只要AI还在发展,英伟达就能发展,英伟达的优势在生态,这是靠时间积累的。技术在快速发展的时候,生态就很重要,真正危机在于技术成熟后,类似电力,变成标准品,大家会关注做产品,就会有很多ASIC芯片出来做特定场景的优化。DeepSeek的出现短期对英伟达股价造成了一些影响,但是只是短期,长期来看,AI才刚开始,如果CUDA还是大家喜欢的选择,那硬件增长空间还是很大的,老黄一定不愁卖显卡。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
在这里插入图片描述

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
在这里插入图片描述

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值