参数估计函数

参数估计就是从样本对总体的估计,属于统计估算的范畴

有三种方法:点估法,矩估计法,区间估计

normfit函数可以对正态分布总体进行估计

[muhat,sigmahat,muci,sigmaci]=normfit(x)

对数据x进行估计,左边是返回的值。默认的置信区间是0.95

.......=normfit(x,alpha)置信区间是1-alpha

常见的参数分布估计函数及调用格式在最下面

 

最大似然法:已知某个参数是这个样本出现的概率最大,就不会考虑其他小概率的样本,直接让其当作估计的真实值

1.点估法

单个数据作为参数的估计

2.最大似然法   区间估计

p=mle(‘norm’,x)

p(1)==得到的参数

p(2)^2==方差

[p,m]=mel('dsit',data)  p与上同  m为在这个置信区间中的最大估计值和最小估计值,后边是标准差

[p,m]=mel('dist',data,alpha)  alpha为置信区间

[p,m]=mel('dist',data,alpha,n)  n为实验的次数

3.参数传递

编写函数文件后必须调用,才能使用

nargin和nargout表示调用时实际传递的输入和输出参数的个数

如果参数可变,则用varargin和varargout函数来实现可变参数的传递  函数把参数值封装为一个元细胞组

函数变量区间中x被修改只在函数变量区有效,并不影响工作区的变量

使用全局变量或永久变量时需要声明:global  persistent

全局变量对工作区也有效

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值