参数估计就是从样本对总体的估计,属于统计估算的范畴
有三种方法:点估法,矩估计法,区间估计
normfit函数可以对正态分布总体进行估计
[muhat,sigmahat,muci,sigmaci]=normfit(x)
对数据x进行估计,左边是返回的值。默认的置信区间是0.95
.......=normfit(x,alpha)置信区间是1-alpha
常见的参数分布估计函数及调用格式在最下面
最大似然法:已知某个参数是这个样本出现的概率最大,就不会考虑其他小概率的样本,直接让其当作估计的真实值
1.点估法
单个数据作为参数的估计
2.最大似然法 区间估计
p=mle(‘norm’,x)
p(1)==得到的参数
p(2)^2==方差
[p,m]=mel('dsit',data) p与上同 m为在这个置信区间中的最大估计值和最小估计值,后边是标准差
[p,m]=mel('dist',data,alpha) alpha为置信区间
[p,m]=mel('dist',data,alpha,n) n为实验的次数
3.参数传递
编写函数文件后必须调用,才能使用
nargin和nargout表示调用时实际传递的输入和输出参数的个数
如果参数可变,则用varargin和varargout函数来实现可变参数的传递 函数把参数值封装为一个元细胞组
函数变量区间中x被修改只在函数变量区有效,并不影响工作区的变量
使用全局变量或永久变量时需要声明:global persistent
全局变量对工作区也有效