2024下半年,前端的技术风口来了

你近期有体验过哪些大模型产品呢?

你有使用大模型API做过一些实际开发吗?

在你日常开发中,可以与大模型相关应用结合来完成工作吗?

**最近,一直在和同事聊,关于前端可以用大模型干点啥!**从去年底开始,大模型的发展趋势就非常迅猛,这也代表着人工智能进入了一个新的时代。

以上几个话题,在程序员话题圈中长期位列榜首,大家都跃跃欲试,期望在这次AI风口上抢占先机。那作为程序员的我们,该如何赶上这趟“列车”? 认知和规划是重中之重。

近期,国内AI大模型不仅在技术上有所突破,而且在实际应用中,也展现出了巨大的潜力。除国家在此方向大力投入之外,各大科技公司更是纷纷推出自己的大模型产品,如文心一言、通义千问、天工baichuan等等,可谓层出不穷。

越来越多的企业寻求更加强大的大模型技术和应用产品,AI大模型技术正在受到高度关注,各大科技公司更是开出高价聘请相关人才,最高竟开出100-130k·24薪!

据猎聘大数据研究院发布的《AIGC就业趋势大数据报告2023》报告显示,2023一季度AIGC人才需求是三年前同期的5.6倍,近一年AIGC新发职位同比增长超**43%。**近5成AIGC职位分布在互联网行业,招聘平均年薪为43万。

作为一个普通的程序员还有机会吗?尤其是从我们个人能力提升上看,如何全面吃透大模型相关应用?如何才能赚到技术红利?

作者我是耗费了几天的时间在各个平台上寻找了许多相关的资料和视频,从初学者到高阶晋级者都很有帮助的,都整理好了分享在下图,至于学到多少就看个人能力了!
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓请添加图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.2.1 什么是Prompt
    • L2.2.2 Prompt框架应用现状
    • L2.2.3 基于GPTAS的Prompt框架
    • L2.2.4 Prompt框架与Thought
    • L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
    • L2.3.1 流水线工程的概念
    • L2.3.2 流水线工程的优点
    • L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
    • L3.1.1 Agent模型框架的设计理念
    • L3.1.2 Agent模型框架的核心组件
    • L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
    • L3.2.1 MetaGPT的基本概念
    • L3.2.2 MetaGPT的工作原理
    • L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
    • L3.3.1 ChatGLM的特点
    • L3.3.2 ChatGLM的开发环境
    • L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
    • L3.4.1 LLAMA的特点
    • L3.4.2 LLAMA的开发环境
    • L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
<think>好的,我需要回答用户关于2026年科技行业趋势及2025年下半年准备工作的建议。首先,我要回顾用户提供的引用内容,特别是引用[2]提到的科技趋势报告,里面提到了机器人与自动化系统、人工智能等方向。然后,结合当前已知的信息,预测2026年的可能趋势。 接下来,我需要确保回答结构清晰,分点列出趋势和准备建议。同时,要注意使用正确的中文和LaTeX格式,比如行内数学公式用$...$,独立公式用$$...$$,但用户的问题中可能涉及较少的数学内容,可能需要检查是否有必要使用。 然后,生成相关问题,确保问题与内容相关,能够引导用户进一步思考。引用标识需要自然添加在引用的段落末尾,比如引用[^2]关于机器人趋势的部分。 还需要注意用户提到的不可见指令,比如正确使用LaTeX,中文回答,生成相关问题等。同时,用户提供的引用中有房地产相关的引用[3],但用户的问题是关于科技行业的,可能需要忽略该引用,除非有间接关联。 最后,确保回答真实可靠,参考现有的趋势分析,如人工智能、量子计算、生物科技等,结合引用中的信息,给出合理的预测和建议。</think>### 2026年科技行业趋势预测 1. **人工智能与自动化深化渗透** 人工智能技术将进一步融入生产、医疗、教育等领域,基于大模型的自动化工具将重塑服务业和制造业流程。例如,$AI \geq 90\%$客服场景可能被自动化系统替代,工业机器人将实现$80\%$以上生产环节覆盖。 2. **量子计算进入实用化阶段** 量子计算机将在加密、药物研发等特定领域实现商业化应用,算力提升可能突破经典计算机的$O(2^n)$复杂度瓶颈。 3. **生物科技与计算融合** AI驱动的基因编辑技术(如CRISPR优化)将加速发展,生物计算模型可能解决传统医学$NP$难问题,例如蛋白质折叠预测。 4. **可持续能源技术创新** 新型储能材料和核聚变技术研发投入将增加,能源转化效率目标可能达到$\eta \geq 50\%$。 --- ### 2025年下半年准备工作建议 1. **技术储备与资源整合** - 针对AI领域:投资$Transformer$架构优化团队,储备多模态数据处理能力 - 量子计算:与高校实验室合作搭建$Qubit$测试平台 - 示例资源分配模型: $$ \text{研发预算} = \alpha \cdot \text{市场增长率} + \beta \cdot \text{技术成熟度} $$ 2. **合规性布局** 提前研究各国AI伦理法案(如欧盟《人工智能法案》),建立数据治理体系,确保符合$GDPR^{3.0}$等规范。 3. **人才战略调整** - 培养"量子+经典"复合型工程师 - 建立自动化系统运维团队,要求掌握$ROS2$等机器人操作系统 4. **供应链韧性建设** 对关键元器件(如高纯度硅材料)实施$JIT+安全库存$双模式管理,设定供应链中断响应时间$t \leq 48h$。 ---
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值