栈是一种“后进先出”的线性数据结构。栈只有一端能进出元素,我们一般称这一端为栈顶,另一端为栈底。添加或删除栈中元素时,我们只能将其插入栈顶,或者将栈顶元素取出。
我们可以使用一个线性结构保存历史上每个时刻的最小值,这样不管我们退栈到什么场景都可以O(1)时间复杂度得到当前的最小值。建立两个栈,栈A存储原来的的数据,栈B存储A中以栈底开头的每段数据的最小值。
class MinStack {
public:
/** initialize your data structure here. */
stack<int>svalue;
stack<int>smin;
MinStack() {
}
void push(int x) {
svalue.push(x);
if(smin.empty())smin.push(x);
else smin.push(min(smin.top(),x));
}
void pop() {
svalue.pop();
smin.pop();
}
int top() {
return svalue.top();
}
int getMin() {
return smin.top();
}
};
/**
* Your MinStack object will be instantiated and called as such:
* MinStack obj = new MinStack();
* obj.push(x);
* obj.pop();
* int param_3 = obj.top();
* int param_4 = obj.getMin();
*/
对顶栈,栈A存储从序列开头到当前光标位置的这一段序列,栈B存储当前光标到序列结尾的这一段序列。
#include<iostream>
#include<stack>
using namespace std;
#define MAX_N 1000000
int q;
int sum[MAX_N+5];
int f[MAX_N+5]={-1000};
int cnt1=0,cnt2=0;
int main()
{
stack<int>s1,s2;
cin>>q;
while(q--)
{
char op;
int x;
cin>>op;
if(op=='I')
{
scanf("%d",&x);
cnt1+=1;
s1.push(x);
sum[cnt1]=sum[cnt1-1]+x;
f[cnt1]=max(f[cnt1-1],sum[cnt1]);
}
else if(op=='D')
{
if(cnt1)
{
cnt1-=1;
s1.pop();
}
}
else if(op=='L')
{
if(cnt1)
{
cnt1-=1;
cnt2+=1;
s2.push(s1.top());
s1.pop();
}
}
else if(op=='R')
{
if(cnt2)
{
cnt1+=1;
cnt2-=1;
sum[cnt1]=sum[cnt1-1]+s2.top();
s1.push(s2.top());
s2.pop();
f[cnt1]=max(f[cnt1-1],sum[cnt1]);
}
}
else{
scanf("%d",&x);
if(x>cnt1)cout<<f[cnt1]<<'\n';
else cout<<f[x]<<'\n';
}
}
return 0;
}
搜索,为了保证字典序最小所以优先进行出栈,其次考虑进站。
#include<iostream>
#include<vector>
#include<stack>
using namespace std;
int n;
vector<int>state1;
stack<int>state2;
int state3=1;
int cnt=0;
void dfs()
{
if(cnt==20)return ;
if(state1.size()==n)
{
cnt++;
for(auto k:state1)cout<<k;
cout<<endl;
return ;
}
if(state2.size())
{
int k=state2.top();
state1.push_back(k);
state2.pop();
dfs();
state2.push(k);
state1.pop_back();
}
if(state3<=n)
{
state2.push(state3);
state3++;
dfs();
state2.pop();
state3--;
}
return ;
}
int main()
{
cin>>n;
dfs();
return 0;
}
表达式计算
中缀表达式 最常见的表达式,例如3*(1-2)
前缀表达式 又称波兰式,形如 op A B,其中op是一个运算符,A B是另两个前缀表达式,例如 *3-12
后缀表达式 又称逆波兰式,形如 A B op,例如12-3*
后缀表达式求值
1.建立一个用于存数的栈,逐一扫描该后缀是的元素。
a.如果遇到一个数,则把该数入栈。
b.如果遇到运算符,就取出栈顶两个数计算,把结果入栈。
2.扫描完成后,栈中恰好剩一个数,就是该后缀表达式的值。
想要求中缀表达式的值,一般可以转化为后缀式计算,也可以递归来算。
中缀表达式转后缀表达式
1.建立一个用于存运算符的栈,注意扫描该中缀表达式的元素。
a.如果遇到一个数,输出该数。
b.如果遇到左括号,把左括号进栈。
c.如果遇到右括号,不断取出栈顶并输出,直到栈顶为左括号,然后把左括号出栈。
d.如果遇到运算符,只要栈顶符号优先级不低于新符号,就不断取出栈顶并输出,最后把新符号进栈。优先级为乘除>加减>左括号。
2.依次取出并输出栈中的所有剩余符号,最终输出的序列是一个与源中缀表达式等价的后缀表达式。
中缀表达式的递归法求值
目标:求解中缀表达式S[1~N]的值。
子问题:求解中缀表达式S的子区间表达式S[L~R]的值。
1.在L~R中考虑没有被任何括号包含的运算符。
a.若存在加减号,选其中最后一个,分成左右两半递归。
b.若存在乘除号,选其中最后一个,分成左右两半递归。
2.若不存在没有被任何括号包含的运算符。
a.若首尾字符是括号,递归求解S[L+1~R±1],把结果返回。
b.否则,说明区间S[L~R]是一个数,直接返回数值。
单调栈
对于每一个小矩形,以他的高度为大长方形的高度,找到左右最近小于它的高度的位置,这样得到的一个大长方形的面积就是(r[i]-l[i]-1)*arr[i],找到所有面积中最大的一个。
#include<iostream>
#include<vector>
#include<stack>
using namespace std;
#define MAX_N 100000
int arr[MAX_N+5];
int n;
long long ans=0;
int l[MAX_N+5],r[MAX_N+5];
int main()
{
while(1)
{
ans=0;
cin>>n;
if(n==0)break;
stack<int>s;
arr[0]=0;
for(int i=1;i<=n;i++)
scanf("%d",arr+i);
arr[n+1]=-1;
for(int i=0;i<=n+1;i++)
{
while(!s.empty()&&arr[s.top()]>arr[i])
{
r[s.top()]=i;
s.pop();
}
s.push(i);
}
for(int i=n+1;i>=0;i--)
{
while(!s.empty()&&arr[s.top()]>arr[i])
{
l[s.top()]=i;
s.pop();
}
s.push(i);
}
for(int i=1;i<=n;i++)
{
ans=max(1ll*(r[i]-l[i]-1)*arr[i],ans);
}
cout<<ans<<endl;
}
return 0;
}