【算法竞赛进阶指南】0x11 栈

文章介绍了如何使用栈数据结构维护序列中的最小元素,包括使用两个栈来处理修改操作,以及在后缀表达式求值中的应用。还涉及到了单调栈和验证栈序列的题目解决方案。

算法竞赛进阶指南_李煜东_17588649_zhelper-search.pdf

索引:59

0x11 栈

基础应用

两个栈维护前面区间的最小元素

41. 包含min函数的栈 - AcWing题库

可以开个小根堆维护最小值,但是这样时间是logN的。如果只用一个变量来存,一旦出现了出栈操作就无从下手了。因此用一个线性结构来保存每个历史时刻的最小值。

开两个栈,一个用来存数据,一个记录当前最小值。

有数据入栈,就把这个数据与minn栈栈顶做对比决定是否入栈。出栈也做个对比即可维护这样一个数据结构。

class MinStack {
public:
    /** initialize your data structure here. */
    stack<int> st;
    stack<int> minn;
    MinStack() {
        
    }
    
    void push(int x) {
        st.push(x);
        if(minn.empty()||minn.top()>=x) minn.push(x);
    }
    
    void pop() {
        if(st.top()==minn.top()) minn.pop();
        st.pop();
    }
    
    int top() {
        return st.top();
    }
    
    int getMin() {
        return minn.top();
    }
};

/**
 * Your MinStack object will be instantiated and called as such:
 * MinStack obj = new MinStack();
 * obj.push(x);
 * obj.pop();
 * int param_3 = obj.top();
 * int param_4 = obj.getMin();
 */
序列中修改某个指定位置

始终在序列中间,某个指定位置进行修改,就可以用两个栈,类似于对顶堆用对顶栈来维护。

P2201 数列编辑器 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

128. 编辑器 - AcWing题库

#include<bits/stdc++.h>
using ll=long long;
#define int ll
const int N=1e6+10;
const int M=1e5+10;
int q;
int s[N],m[N];
std::stack<int> l,r;
void solve()
{
	std::cin>>q;
	m[0]=-2e9;
	while(q--)
	{
		char op;
		std::cin>>op;
		//getchar();
		int x;
		if(op=='I')
		{
			std::cin>>x;
			l.push(x);
			s[l.size()]=s[l.size()-1]+x;
			m[l.size()]=std::max(m[l.size()-1],s[l.size()]);
			
		}else if(op=='D'&&l.size()){
			l.pop();
			
		}else if(op=='L'&&l.size()){
			r.push(l.top());
			l.pop();
			
		}else if(op=='R'&&am
### 单调算法简介 单调是一种特殊的结构,在处理某些特定问题时非常高效。其核心特点是保持内元素按照某种顺序排列,通常为递增或递减序列[^1]。 #### 单调的应用场景 当遇到如下特征的问题时可以考虑使用单调: - 需要找到某个范围内最大/最小值的位置 - 寻找左侧第一个大于等于当前数的位置 - 查找右侧第一个小于当前位置数值的情况 这些问题在实际编程竞赛中较为常见,尤其是在涉及数组、链表等线性数据结构的操作上表现出色[^2]。 #### AcWing平台上的单调题目实例解析 ##### 实例一:寻找下一个更大元素 (Next Greater Element) 给定两个没有重复数字的数组 `nums1` 和 `nums2` ,其中 `nums1` 是 `nums2` 的子集。对于每一个位于 `nums1[i]` 中的元素,在 `nums2` 数组里查找该位置右边的第一个更大的数;如果不存在,则返回 `-1` 。此题可以通过构建一个从右向左遍历并维护降序关系的单调来解决。 ```python def nextGreaterElement(nums1, nums2): stack = [] res_map = {} for num in reversed(nums2): while stack and stack[-1] <= num: stack.pop() if not stack: res_map[num] = -1 else: res_map[num] = stack[-1] stack.append(num) result = [res_map[x] for x in nums1] return result ``` 上述代码实现了通过一次反向扫描建立映射表的功能,并利用了单调特性快速定位到目标值及其对应的最近较大值[^3]。 ##### 实例二:柱状图中的最大矩形面积 (Largest Rectangle in Histogram) 这个问题要求在一个由多个宽度相同但高度不同的直方条组成的图形中找出能够构成的最大矩形区域。解决方案之一就是采用两次正逆双向遍历的方法配合单调实现高效的计算过程。 ```python def largestRectangleArea(heights): heights.append(0) # 添加哨兵节点简化边界条件判断 stack = [-1] max_area = 0 for i, h in enumerate(heights): while heights[stack[-1]] > h: height = heights[stack.pop()] width = i - stack[-1] - 1 max_area = max(max_area, height * width) stack.append(i) return max_area ``` 这段程序展示了如何巧妙运用单调技巧以及额外加入辅助元素的方式解决了复杂度较高的几何优化难题[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值