【小红书采集软件】根据关键词批量爬取小红书笔记正文、笔记链接、发布时间、转评赞藏等

一、背景介绍

1.1 爬取目标

熟悉我的小伙伴可能了解,我之前开发过2款软件:

【GUI软件】小红书搜索结果批量采集,支持多个关键词同时抓取!
【GUI软件】小红书详情数据批量采集,含笔记内容、转评赞藏等,支持多笔记同时采集!

现在介绍的这个软件,相当于以上2个软件的结合版,即根据关键词爬取笔记的详情数据。

开发界面软件的目的:方便不懂编程代码的小白用户使用,无需安装python,无需改代码,双击打开即用!

软件界面截图:软件运行界面

爬取结果截图:

结果截图1:结果截图1

结果截图2:结果截图2

结果截图3:结果截图3

以上。

1.2 演示视频

软件使用演示视频:(不懂编程的小白直接看视频,了解软件作用即可,无需看代码

【软件演示】爬小红书搜索详情软件

1.3 软件说明

几点重要说明:
软件说明

以上。

二、代码讲解

2.1 爬虫采集-搜索接口

首先,定义接口地址作为请求地址:

# 请求地址
url = 'https://edith.xiaohongshu.com/api/sns/web/v1/search/notes'

定义一个请求头,用于伪造浏览器:

# 请求头
h1 = {
	'Accept': 'application/json, text/plain, */*',
	'Accept-Encoding': 'gzip, deflate, br',
	'Accept-Language': 'zh-CN,zh;q=0.9,en;q=0.8,en-GB;q=0.7,en-US;q=0.6',
	'Content-Type': 'application/json;charset=UTF-8',
	'Cookie': '换成自己的cookie值',
	'Origin': 'https://www.xiaohongshu.com',
	'Referer': 'https://www.xiaohongshu.com/',
	'Sec-Ch-Ua': '"Microsoft Edge";v="119", "Chromium";v="119", "Not?A_Brand";v="24"',
	'Sec-Ch-Ua-Mobile': '?0',
	'Sec-Ch-Ua-Platform': '"macOS"',
	'Sec-Fetch-Dest': 'empty',
	'Sec-Fetch-Mode': 'cors',
	'Sec-Fetch-Site': 'same-site',
	'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0',
}

加上请求参数,告诉程序你的爬取条件是什么:

# 请求参数
post_data = {
	"keyword": search_keyword,
	"page": page,
	"page_size": 20,
	"search_id": v_search_id,
	"sort": v_sort,
	"note_type": v_note_type,
	"image_scenes": "FD_PRV_WEBP,FD_WM_WEBP",
}

2.2 爬虫采集-详情接口

首先,定义接口地址作为请求地址:

# 请求地址
url = 'https://edith.xiaohongshu.com/api/sns/web/v1/feed'

定义一个请求头,用于伪造浏览器:

# 请求头
h1 = {
	'Accept': 'application/json, text/plain, */*',
	'Accept-Encoding': 'gzip, deflate, br',
	'Accept-Language': 'zh-CN,zh;q=0.9,en;q=0.8,en-GB;q=0.7,en-US;q=0.6',
	'Content-Type': 'application/json;charset=UTF-8',
	'Cookie': '换成自己的cookie值',
	'Origin': 'https://www.xiaohongshu.com',
	'Referer': 'https://www.xiaohongshu.com/',
	'Sec-Ch-Ua': '"Microsoft Edge";v="119", "Chromium";v="119", "Not?A_Brand";v="24"',
	'Sec-Ch-Ua-Mobile': '?0',
	'Sec-Ch-Ua-Platform': '"macOS"',
	'Sec-Fetch-Dest': 'empty',
	'Sec-Fetch-Mode': 'cors',
	'Sec-Fetch-Site': 'same-site',
	'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0',
}

加上请求参数,告诉程序你的爬取条件是什么:

# 请求参数
post_data = {
	"source_note_id": note_id,
	"image_formats": ["jpg", "webp", "avif"],
	"extra": {"need_body_topic": "1"}
}

下面就是发送请求和接收数据:

# 发送请求
r = requests.post(url, headers=h1, data=data_json)
# 接收数据
json_data = r.json()

逐个解析字段数据,以"笔记标题"为例:

# 笔记标题
try:
	title = json_data['data']['items'][0]['note_card']['title']
except:
	title = ''

熟悉xhs的朋友都知道,有些笔记是没有标题的,所以这里加上try保护,防止程序报错导致中断运行。

其他字段同理,不再赘述。

下面就是发送请求和接收数据:

# 发送请求
r = requests.post(url, headers=h1, data=data_json.encode('utf8'))
print(r.status_code)
# 以json格式接收返回数据
json_data = r.json()

定义一些空列表,用于存放解析后字段数据:

# 定义空列表
note_id_list = []  # 笔记id
note_title_list = []  # 笔记标题
note_type_list = []  # 笔记类型
like_count_list = []  # 点赞数
user_id_list = []  # 用户id
user_name_list = []  # 用户昵称

循环解析字段数据,以"笔记标题"为例:

# 循环解析
for data in json_data['data']['items']:
	# 笔记标题
	try:
		note_title = data['note_card']['display_title']
	except:
		note_title = ''
	print('note_title:', note_title)
	note_title_list.append(note_title)

其他字段同理,不再赘述。

最后,是把数据保存到csv文件:

# 把数据保存到Dataframe
df = pd.DataFrame(
	{
		'关键词': search_keyword,
		'页码': page,
		'笔记id': note_id_list,
		'笔记链接': ['https://www.xiaohongshu.com/explore/' + i for i in note_id_list],
		'笔记标题': note_title_list,
		'笔记类型': note_type_list,
		'点赞数': like_count_list,
		'用户id': user_id_list,
		'用户主页链接': ['https://www.xiaohongshu.com/user/profile/' + i for i in user_id_list],
		'用户昵称': user_name_list,
	}
)
if os.path.exists(result_file):
	header = False
else:
	header = True
# 把数据保存到csv文件
df.to_csv(result_file, mode='a+', index=False, header=header, encoding='utf_8_sig')

完整代码中,还含有:判断循环结束条件、js逆向解密、笔记类型(综合/视频图文)筛选、排序方式筛选(综合/最新/最热)等关键实现逻辑。

2.3 cookie说明

其中,cookie是个关键参数。
cookie里的a1和web_session获取方法,如下:查看a1和web_session

这两个值非常重要,软件界面需要填写!!

开发者模式的打开方法:页面空白处->右键->检查。

2.4 软件界面模块

主窗口部分:

# 创建主窗口
root = tk.Tk()
root.title('小红书搜索详情采集软件v1.0 | 马哥python说 |')
# 设置窗口大小
root.minsize(width=850, height=650)
输入控件部分:
# 搜索关键词
tk.Label(root, justify='left', text='搜索关键词:').place(x=30, y=160)
entry_kw = tk.Text(root, bg='#ffffff', width=60, height=2, )
entry_kw.place(x=125, y=160, anchor='nw')  # 摆放位置

底部版权部分:

# 版权信息
copyright = tk.Label(root, text='@马哥python说 All rights reserved.', font=('仿宋', 10), fg='grey')
copyright.place(x=290, y=625)

以上。

2.5 日志模块

好的日志功能,方便软件运行出问题后快速定位原因,修复bug。

核心代码:

def get_logger(self):
	self.logger = logging.getLogger(__name__)
	# 日志格式
	formatter = '[%(asctime)s-%(filename)s][%(funcName)s-%(lineno)d]--%(message)s'
	# 日志级别
	self.logger.setLevel(logging.DEBUG)
	# 控制台日志
	sh = logging.StreamHandler()
	log_formatter = logging.Formatter(formatter, datefmt='%Y-%m-%d %H:%M:%S')
	# info日志文件名
	info_file_name = time.strftime("%Y-%m-%d") + '.log'
	# 将其保存到特定目录,ap方法就是寻找项目根目录,该方法博主前期已经写好。
	case_dir = r'./logs/'
	info_handler = TimedRotatingFileHandler(filename=case_dir + info_file_name,
						when='MIDNIGHT',
						interval=1,
						backupCount=7,
						encoding='utf-8')

日志文件截图:日志文件

以上。

三、获取源码及软件

完整python源码及exe软件,微信公众号"老男孩的平凡之路“后台回复”爬小红书搜索详情软件"即可获取。点击直达

爬虫(Web Crawler)是一种自动化程序,用于从互联网上收集信息。其主要功能是访问网页、提取数据并存储,以便后续分析或展示。爬虫通常由搜索引擎、数据挖掘工具、监测系统等应用于网络数据抓取的场景。 爬虫的工作流程包括以下几个关键步骤: URL收集: 爬虫从一个或多个初始URL开始,递归或迭代地发现新的URL,构建一个URL队列。这些URL可以通过链接分析、站点地图、搜索引擎等方式获取。 请求网页: 爬虫使用HTTP或其他协议向目标URL发起请求,获取网页的HTML内容。这通常通过HTTP请求库实现,如Python中的Requests库。 解析内容: 爬虫对获取的HTML进行解析,提取有用的信息。常用的解析工具有正则表达式、XPath、Beautiful Soup等。这些工具帮助爬虫定位和提取目标数据,如文本、图片、链接等。 数据存储: 爬虫将提取的数据存储到数据库、文件或其他存储介质中,以备后续分析或展示。常用的存储形式包括关系型数据库、NoSQL数据库、JSON文件等。 遵守规则: 为避免对网站造成过大负担或触发反爬虫机制,爬虫需要遵守网站的robots.txt协议,限制访问频率和深度,并模拟人类访问行为,如设置User-Agent。 反爬虫应对: 由于爬虫的存在,一些网站采取了反爬虫措施,如验证码、IP封锁等。爬虫工程师需要设计相应的策略来应对这些挑战。 爬虫在各个领域都有广泛的应用,包括搜索引擎索引、数据挖掘、价格监测、新闻聚合等。然而,使用爬虫需要遵守法律和伦理规范,尊重网站的使用政策,并确保对被访问网站的服务器负责。
<think>好的,我现在需要帮助用户了解如何通过程序实现自动对微博账号的点论和发功能。用户提到了使用API或脚本自动化,所以我需要结合提供的引用和现有知识来构建一个全面的回答。 首先,我需要回顾用户提供的引用内容。引用[1]提到了PHP开发的微博机器人工具集,整合了OAuth认证,支持自动发、定时发布、RSS更新和马尔科夫链生成微博。引用[4]涉及web自动化微博爬虫,通过分析数据包结构提取论内容等信息。引用[2]和[3]虽然主要关于自动化测试和抖音取消点,但可能提供一些自动化流程的通用方法,比如使用API和定时任务。 接下来,我应该分步骤来解析实现这些功能的可能方法。首先,认证机制是关键,因为微博API需要OAuth授权。然后,针对每个功能(点论、发)需要找到对应的API端点或模拟浏览器操作。如果API不可用,可能需要逆向工程网页请求,如引用[4]中的例子。 另外,用户可能关心如何安全地执行这些操作,避免账号被封禁,因此需要提到频率控制和模拟人类行为。引用[3]中的抖音脚本使用了定期发送请求和进度显示,这可能适用于微博的自动化操作,但需要注意微博的反爬机制。 还需要考虑使用现有的SDK或库来简化开发,比如Python的requests库处理HTTP请求,或者Selenium进行浏览器自动化。引用[1]中的PHP工具集可能是一个参考,但用户可能需要其他语言的解决方案,所以应保持语言中立。 最后,生成相关问题时,需要覆盖实现步骤、认证方法、防封策略、与其他平台对比以及处理验证码等方面,帮助用户全面了解可能遇到的问题和解决方案。</think>要实现微博账号的自动化点论和发功能,可以通过以下两种主要技术路径实现: ### 一、基于官方API的自动化实现 1. **OAuth认证机制** 需先申请微博开发者权限,获取$AppKey$和$AppSecret$。通过OAuth 2.0协议完成授权流程,生成访问令牌$access_token$。这是所有API调用的凭证[^1]。 2. **API接口调用** - 点功能:调用`statuses/set_like`接口 - 论功能:使用`comments/create`接口 - 发功能:通过`statuses/repost`接口实现 3. **Python示例代码框架** ```python import requests def weibo_action(access_token, action_type, status_id): base_url = "https://api.weibo.com/2/" params = { "access_token": access_token, "id": status_id } if action_type == "like": response = requests.post(base_url + "statuses/set_like.json", params=params) elif action_type == "repost": response = requests.post(base_url + "statuses/repost.json", data={"status": "发内容"}) return response.json() ``` ### 二、基于Web自动化的脚本实现 当API权限受限时,可采用模拟浏览器方案: 1. **Selenium自动化框架** ```python from selenium import webdriver from selenium.webdriver.common.by import By driver = webdriver.Chrome() driver.get("https://weibo.com") # 登录操作 driver.find_element(By.XPATH, "//input[@node-type='username']").send_keys("账号") driver.find_element(By.XPATH, "//input[@node-type='password']").send_keys("密码") # 点操作(需先获取动态元素) like_btn = driver.find_element(By.XPATH, "//div[@action-type='feed_list_like']") like_btn.click() ``` 2. **请求包逆向分析** 通过浏览器开发者工具捕获网络请求,可发现点操作的典型请求格式: ``` POST /aj/v6/like/add?ajwvr=6 HTTP/1.1 Form Data: location: v6_content_homelike version: 6 objectid: 1234567890 # 动态ID ``` ### 三、关键注意事项 1. **频率控制策略** 建议设置随机操作间隔,推荐使用泊松分布进行时间间隔控制,避免触发反爬机制。例如: $$ P(X=k) = \frac{\lambda^k e^{-\lambda}}{k!} \quad (k=0,1,2,\dots) $$ 2. **多账号管理** 可使用Redis存储多个账号的cookie和token,通过轮询机制分配任务。 3. **验证码应对方案** 建议集成第三方打码平台,或使用CNN图像识别模型自动处理验证码。引用案例中的马尔科夫链技术也可用于生成更自然的论内容[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值