机器学习
文章平均质量分 87
机器学习
杨十三v
大三在校生
展开
-
机器学习-----------主成分分析
主成分分析(Principal Component Analysis,PCA)是一种常用的数据降维技术,它通过线性变换将高维数据转换为低维数据,同时保留数据的主要特征。PCA的基本思想是找到数据中的主成分,即数据中最大方差的方向,然后将数据投影到这些主成分上,从而实现数据的降维。通过PCA,可以减少数据的维度,去除数据中的噪音和冗余信息,从而更好地理解和分析数据。PCA在数据分析、模式识别、特征提取等领域都有广泛的应用。原创 2023-12-30 20:26:31 · 1073 阅读 · 0 评论 -
机器学习------------------------------Logistic回归
Logistic回归:是统计学习中的经典分类方法,属于,所以也被称为对数几率回归。虽然是叫做回归,但其实这是一种,Logistic回归是一种线性分类器,针对的是线性可分问题。原创 2023-12-04 21:45:00 · 1051 阅读 · 1 评论 -
机器学习-------------------朴素贝叶斯
官话定义:1)P(cj)代表还没有训练模型之前,根据历史数据/经验估算cj拥有的初始概率。P(cj)常被称为cj的先验概率(prior probability) ,它反映了cj的概率分布,该分布独立于样本。假设要猜测西瓜的好坏问题,如何判断正反概率?根据自己以往购买西瓜的经验,好瓜的概率是p(好瓜)=0.6,坏瓜概率是p(坏瓜)=0.4 则可将p(好瓜)=0.6,p(坏瓜)=0.4作为,也就是观测新样本前就已知的先验分布p(y)。即根据以往经验和分析。原创 2023-11-15 22:11:57 · 75 阅读 · 0 评论 -
机器学习-----------------决策树(代码实现)
在划分数据集之前之后信息发生的变化称为信息增益.原创 2023-11-04 16:20:04 · 926 阅读 · 1 评论 -
机器学习-----------性能度量
在机器学习中,性能度量是评估和度量模型预测能力的重要指标。在进行实验时,可以使用以下几种常见的性能度量来评估模型的性能:1. 准确率(Accuracy):准确率是最常用的性能度量指标,表示模型正确预测的样本数占总样本数的比例。准确率越高,模型的预测能力越好。2. 精确率(Precision)和召回率(Recall):精确率和召回率是在二分类问题中常用的性能度量指标。精确率表示模型预测为正类的样本中真正为正类的比例,召回率表示真正为正类的样本中被模型预测为正类的比例。原创 2023-10-23 21:00:00 · 112 阅读 · 0 评论 -
机器学习--------------KNN算法实现
(1)此次算法的实例还不够完整,还缺少数据分析(2)k算法的是优点:简单易懂不需要训练过程;缺点:样本不平衡的时候,对稀有类别的预测准确率低。原创 2023-10-09 13:02:06 · 811 阅读 · 1 评论 -
机器学习环境搭建(vscode+anaconda安装+conda虚拟环境的激活)超详细
http://Anaconda.org的服务器在国外,安装多个packages时,conda下载的速度经常很慢。anaconda命令创建python版本为x.x,名字为test的虚拟环境。Windows: conda activate test(注意切换成功后前面的base改变成你虚拟环境的名字)(值得说一下的是,找一下刚刚安装时anaconda的安装路径,然后复制)安装的时候是用pip 安装, 卸载的时候也需要pip uninstall。相应用户的目录存在差异,但是后面的路径名称相同。原创 2023-09-25 21:22:24 · 906 阅读 · 1 评论