机器学习-----------主成分分析

一.PCA概念及原理

1.1概念

主成分分析(Principal Component Analysis,PCA)是一种常用的数据降维技术,它通过线性变换将高维数据转换为低维数据,同时保留数据的主要特征。PCA的基本思想是找到数据中的主成分,即数据中最大方差的方向,然后将数据投影到这些主成分上,从而实现数据的降维。通过PCA,可以减少数据的维度,去除数据中的噪音和冗余信息,从而更好地理解和分析数据。PCA在数据分析、模式识别、特征提取等领域都有广泛的应用。

1.2原理

PCA(主成分分析)是一种用于降低数据维度的技术,它通过线性变换将原始数据转换为一组新的特征,这些新特征被称为主成分。PCA的原理可以简要概括如下:

1. 数据中心化:首先将原始数据进行中心化处理,即将每个特征的均值减去该特征的均值,以确保数据的均值为零。

2. 计算协方差矩阵:接下来计算数据的协方差矩阵,该矩阵可以展示数据特征之间的相关性。

3. 特征值分解:对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。

4. 选择主成分:根据特征值的大小,选择最大的k个特征值对应的特征向量作为主成分,其中k是希望降维后的维度。

5. 数据转换:将原始数据乘以选定的主成分矩阵,得到降维后的数据。

通过这种方式,PCA可以将原始数据转换为更少的特征,同时尽可能保留原始数据的信息。这种降维的方法可以帮助减少数据的复杂性,提高计算效率,并且在一些数据可视化和模式识别的任务中有很好的应用。

二.PCA算法模型

经典的PCA解决问题可划分为以下步骤:

  1. 数据的导入与处理(eg.人脸识别中需要将每一张人脸拉成一列或一行)
  2.  计算数据均值并对数据中心化
  3.  计算协方差矩阵(散度矩阵)
  4.  分解协方差矩阵得到按特征值从大到小排序的特征向量(也可用SVD分解)
  5.  取出前k个特征向量作为投影,使原数据降维到对应投影方向,实现由原本n维数据降到k维
     

三.PCA应用人脸识别

3.1预处理

预处理包括数据导入处理、求均值去心化、分解协方差矩阵得到特征向量(特征脸)

3.1.1导入数据

clear;
% 1.人脸数据集的导入与数据处理(400张图,一共40人,一人10张)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
reshaped_faces=[];
for i=1:40    
    for j=1:10       
        if(i<10)
           a=imread(strcat('C:\Users\86158\Desktop\学习资料\机器学习\第九讲 主成分分析\Face_Dataset\Face\ORL_Faces\s3',num2str(i),'-',num2str(j),'.tif'));     
        else
            a=imread(strcat('C:\Users\86158\Desktop\学习资料\机器学习\第九讲 主成分分析\Face_Dataset\Face\ORL_Faces\s3',num2str(i),'-',num2str(j),'.tif'));  
        end          
        b = reshape(a,2000,1); %将每一张人脸拉成列向量
        b=double(b); %utf-8转换为double类型,避免人脸展示时全灰的影响       
        reshaped_faces=[reshaped_faces, b];  
    end
end
 
% 取出前30%作为测试数据,剩下70%作为训练数据
test_data_index = [];
train_data_index = [];
for i=0:39
    test_data_index = [test_data_index 10*i+1:10*i+3];
    train_data_index = [train_data_index 10*i+4:10*(i+1)];
end
 
train_data = reshaped_faces(:,train_data_index);
test_data = reshaped_faces(:, test_data_index);

3.1.2数据集求均值与数据中心化

利用mean函数对训练集求平均值,得出平均脸(如图1),将训练集中所有数据减去平均脸,实现中心化(中心化后某些人脸如图2,相对原图灰度值更低)

% 2.图像求均值,中心化
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
% 求平均脸
mean_face = mean(train_data,2);
%waitfor(show_face(mean_face)); %平均脸展示,测试用
 
% 中心化
centered_face = (train_data - mean_face);
%用于展示中心化后某些训练图片 测试用
%waitfor(show_faces(centered_face));

3.1.3求协方差矩阵、特征值与特征向量并排序

根据数学推导,协方差矩阵可由cov_matrix = centered_face(中心化人脸数据集) * centered_face'求得,再利用eig函数基于特征值对协方差矩阵进行分解(或使用SVD),并用sort函数将特征向量按从大到小排序好,得到所有特征脸(部分特征脸如图3)。
 

% 3.求协方差矩阵、特征值与特征向量并排序
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
% 协方差矩阵
cov_matrix = centered_face * centered_face';
[eigen_vectors, dianogol_matrix] = eig(cov_matrix);
% 从对角矩阵获取特征值
eigen_values = diag(dianogol_matrix);
% 对特征值按索引进行从大到小排序
[sorted_eigen_values, index] = sort(eigen_values, 'descend'); 
% 获取排序后的征值对应的特征向量
sorted_eigen_vectors = eigen_vectors(:, index);
% 特征脸(所有)
all_eigen_faces = sorted_eigen_vectors;
%用于展示某些特征脸 测试用
waitfor(show_faces(all_eigen_faces));

3.2人脸重构

重构的意义:检测特征脸对人脸的还原度与维数的关系(数据降到多少维才能较好还原原始数据)

从已中心化的centered_faces中取出某人脸,用20,40,60,80,...,160个投影(前n个特征向量)按公式rebuild_face = eigen_faces * (eigen_faces' * single_face) + mean_face来重构此人脸,并观察在不同数量的投影下的还原度,重构效果如图4。


 

%%人脸重构
 
% 取出第一个人的人脸,用于重构
single_face = centered_face(:,1);
 
index = 1;
for dimensionality=20:20:160
 
    % 取出相应数量特征脸(前n大的特征向量,用于重构人脸)
    eigen_faces = all_eigen_faces(:,1:dimensionality);
 
    % 重建人脸并显示
        rebuild_face = eigen_faces * (eigen_faces' * single_face) + mean_face;
        subplot(2, 4, index); %两行四列
        index = index + 1;
        fig = show_face(rebuild_face);
        title(sprintf("dimensionality=%d", dimensionality));    
        if (dimensionality == 160)
            waitfor(fig);
        end
end

3.3人脸识别

本实验中有两个变量,k从1~6取值,维度从10~160,探究k值及维度对识别率的共同影响

分别对测试集、训练集进行降维,将人脸投影到10,20,30,…,160维空间中,计算未知人脸与所有已知人脸的距离(欧几里得距离),然后使用最近邻分类器KNN进行识别(共同影响如图5 )

% 5.人脸识别
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
index = 1;       
Y = [];
% KNN
for k=1:6
 
    for i=10:10:160
    % 取出相应数量特征脸
   eigen_faces = all_eigen_faces(:,1:i);
    % 测试、训练数据降维
    projected_train_data = eigen_faces' * (train_data - mean_face);
    projected_test_data = eigen_faces' * (test_data - mean_face);
        % 用于保存最小的k个值的矩阵
        % 用于保存最小k个值对应的人标签的矩阵
        minimun_k_values = zeros(k,1);
        label_of_minimun_k_values = zeros(k,1);
 
        % 测试脸的数量
        test_face_number = size(projected_test_data, 2);
 
        % 识别正确数量
        correct_predict_number = 0;
 
        % 遍历每一个待测试人脸
        for each_test_face_index = 1:test_face_number
 
            each_test_face = projected_test_data(:,each_test_face_index);
 
            % 先把k个值填满,避免在迭代中反复判断
            for each_train_face_index = 1:k
                minimun_k_values(each_train_face_index,1) = norm(each_test_face - projected_train_data(:,each_train_face_index));
                label_of_minimun_k_values(each_train_face_index,1) = floor((train_data_index(1,each_train_face_index) - 1) / 10) + 1;
            end
 
            % 找出k个值中最大值及其下标
            [max_value, index_of_max_value] = max(minimun_k_values);
 
            % 计算与剩余每一个已知人脸的距离
            for each_train_face_index = k+1:size(projected_train_data,2)
 
                % 计算距离
                distance = norm(each_test_face - projected_train_data(:,each_train_face_index));
 
                % 遇到更小的距离就更新距离和标签
                if (distance < max_value)
                    minimun_k_values(index_of_max_value,1) = distance;
                    label_of_minimun_k_values(index_of_max_value,1) = floor((train_data_index(1,each_train_face_index) - 1) / 10) + 1;
                    [max_value, index_of_max_value] = max(minimun_k_values);
                end
            end
 
            % 最终得到距离最小的k个值以及对应的标签
            % 取出出现次数最多的值,为预测的人脸标签
            predict_label = mode(label_of_minimun_k_values);
            real_label = floor((test_data_index(1,each_test_face_index) - 1) / 10)+1;
 
            if (predict_label == real_label)
                %fprintf("预测值:%d,实际值:%d,正确\n",predict_label,real_label);
                correct_predict_number = correct_predict_number + 1;
            else
                %fprintf("预测值:%d,实际值:%d,错误\n",predict_label,real_label);
            end
        end
        % 单次识别率
        correct_rate = correct_predict_number/test_face_number;
 
        Y = [Y correct_rate];
 
        fprintf("k=%d,i=%d,总测试样本:%d,正确数:%d,正确率:%1f\n", k, i,test_face_number,correct_predict_number,correct_rate);
    end
end
% 求不同k值不同维度下的人脸识别率及平均识别率
Y = reshape(Y,k,16);
waitfor(waterfall(Y));
avg_correct_rate=mean(Y);
waitfor(plot(avg_correct_rate));

四.小结

1)PCA(主成分分析)为主流的一种线性降维算法。以”最小重构误差“为目标导向,通过降维(投影),用数据中相对重要(最主要)的信息表达(代替)原数据,从而达到降维的目的。

  • 17
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值