目标检测YOLOv3实战:叶病虫害检测

一.目标检测YOLOv3实战:叶病虫害检测

1.1数据处理

1.1.1数据集介绍

  • 提供了2183张图片,其中训练集1693张,验证集245,测试集245张。
  • 包含7种昆虫,分别是Boerner、Leconte、Linnaeus、acuminatus、armandi、coleoptera和linnaeus。
  • 包含了图片和标注

1.1.2数据集下载和标签格式

将数据解压之后,可以看到insects目录下的结构如下所示。

insects包含train、val和test三个文件夹。train/annotations/xmls目录下存放着图片的标注。每个xml文件是对一张图片的说明,包括图片尺寸、包含的昆虫名称、在图片上出现的位置等信息。

第四章介绍的分类数据集包含图片和标注信息(物体类别),目标检测的数据比分类复杂,一张图像中,需要标记出各个目标区域的位置和类别。

一般的目标区域位置用一个矩形框来表示,一般用以下3种方式表达:

下面我们将从数据集中读取xml文件,将每张图片的标注信息读取出来。在读取具体的标注文件之前,我们先完成一件事情,就是将昆虫的类别名字(字符串)转化成数字表示的类别。因为神经网络里面计算时需要的输入类型是数值型的,所以需要将字符串表示的类别转化成具体的数字。昆虫类别名称的列表是:['Boerner', 'Leconte', 'Linnaeus', 'acuminatus', 'armandi', 'coleoptera', 'linnaeus'],这里我们约定此列表中:'Boerner'对应类别0,'Leconte'对应类别1,...,'linnaeus'对应类别6。使用下面的程序可以得到表示名称字符串和数字类别之间映射关系的字典。

INSECT_NAMES = ['Boerner', 'Leconte', 'Linnaeus', 
                'acuminatus', 'armandi', 'coleoptera', 'linnaeus']

def get_insect_names():
    """
    return a dict, as following,
        {'Boerner': 0,
         'Leconte': 1,
         'Linnaeus': 2, 
         'acuminatus': 3,
         'armandi': 4,
         'coleoptera': 5,
         'linnaeus': 6
        }
    It can map the insect name into an integer label.
    """
    insect_category2id = {}
    for i, item in enumerate(INSECT_NAMES):
        insect_category2id[item] = i

    return insect_category2id

调用get_insect_names函数返回一个dict,描述了昆虫名称和数字类别之间的映射关系。下面的程序从annotations/xml目录下面读取所有文件标注信息。

1.2模型构建

使用定义好的YOLOv3网络结构,

1.3损失函数

飞桨已经将loss封装好,直接计算损失函数,过程更简洁,速度也更快,直接使用

def get_loss(num_classes, outputs, gtbox, gtlabel, gtscore=None,
                anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326],
                anchor_masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]],
                ignore_thresh=0.7,
                use_label_smooth=False):
    """
    使用paddle.vision.ops.yolo_loss
    """
    losses = []
    downsample = 32
    for i, out in enumerate(outputs): # 对三个层级分别求损失函数
        anchor_mask_i = anchor_masks[i]
        loss = paddle.vision.ops.yolo_loss(
                x=out,  # out是P0, P1, P2中的一个
                gt_box=gtbox,  # 真实框坐标
                gt_label=gtlabel,  # 真实框类别
                gt_score=gtscore,  # 真实框得分,使用mixup训练技巧时需要,不使用该技巧时直接设置为1,形状与gtlabel相同
                anchors=anchors,   # 锚框尺寸,包含[w0, h0, w1, h1, ..., w8, h8]共9个锚框的尺寸
                anchor_mask=anchor_mask_i, # 筛选锚框的mask,例如anchor_mask_i=[3, 4, 5],将anchors中第3、4、5个锚框挑选出来给该层级使用
                class_num=num_classes, # 分类类别数
                ignore_thresh=ignore_thresh, # 当预测框与真实框IoU > ignore_thresh,标注objectness = -1
                downsample_ratio=downsample, # 特征图相对于原图缩小的倍数,例如P0是32, P1是16,P2是8
                use_label_smooth=False)      # 使用label_smooth训练技巧时会用到,这里没用此技巧,直接设置为False
        losses.append(paddle.mean(loss))  #mean对每张图片求和
        downsample = downsample // 2 # 下一级特征图的缩放倍数会减半
    return sum(losses) # 对每个层级求和
  • x: 输出特征图。
  • gt_box: 真实框。
  • gt_label: 真实框标签。
  • ignore_thresh,预测框与真实框IoU阈值超过ignore_thresh时,不作为负样本,YOLOv3模型里设置为0.7。
  • downsample_ratio,特征图P0的下采样比例,使用Darknet53骨干网络时为32。
  • gt_score,真实框的置信度,在使用了mixup技巧时用到。
  • use_label_smooth,一种训练技巧,如不使用,设置为False。
  • name,该层的名字,比如'yolov3_loss',默认值为None,一般无需设置。

1.4模型训练

训练过程如 下图所示,输入图片经过特征提取得到三个层级的输出特征图P0(stride=32)、P1(stride=16)和P2(stride=8),相应的分别使用不同大小的小方块区域去生成对应的锚框和预测框,并对这些锚框进行标注。

  • P0层级特征图,对应着使用32×3232×32大小的小方块,在每个区域中心生成大小分别为[116,90][116,90], [156,198][156,198], [373,326][373,326]的三种锚框。

  • P1层级特征图,对应着使用16×1616×16大小的小方块,在每个区域中心生成大小分别为[30,61][30,61], [62,45][62,45], [59,119][59,119]的三种锚框。

  • P2层级特征图,对应着使用8×88×8大小的小方块,在每个区域中心生成大小分别为[10,13][10,13], [16,30][16,30], [33,23][33,23]的三种锚框。

将三个层级的特征图与对应锚框之间的标签关联起来,并建立损失函数,总的损失函数等于三个层级的损失函数相加。通过极小化损失函数,可以开启端到端的训练过程。

############# 这段代码在本地机器上运行请慎重,容易造成死机,我们可以使用较小的MAX_EPOCH运行#######################

import time
import os
import paddle

def get_lr(base_lr = 0.0001, lr_decay = 0.1):
    bd = [10000, 20000]
    lr = [base_lr, base_lr * lr_decay, base_lr * lr_decay * lr_decay]
    learning_rate = paddle.optimizer.lr.PiecewiseDecay(boundaries=bd, values=lr)
    return learning_rate

# MAX_EPOCH = 200
MAX_EPOCH = 10

ANCHORS = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]

ANCHOR_MASKS = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]

IGNORE_THRESH = .7
NUM_CLASSES = 7

TRAINDIR = '/home/aistudio/work/insects/train'
TESTDIR = '/home/aistudio/work/insects/test'
VALIDDIR = '/home/aistudio/work/insects/val'
paddle.set_device("gpu:0")
# 创建数据读取类
train_dataset = TrainDataset(TRAINDIR, mode='train')
valid_dataset = TrainDataset(VALIDDIR, mode='valid')
test_dataset = TrainDataset(VALIDDIR, mode='valid')
# 使用paddle.io.DataLoader创建数据读取器,并设置batchsize,进程数量num_workers等参数
train_loader = paddle.io.DataLoader(train_dataset, batch_size=10, shuffle=True, num_workers=0, drop_last=True, use_shared_memory=False)
valid_loader = paddle.io.DataLoader(valid_dataset, batch_size=10, shuffle=False, num_workers=0, drop_last=False, use_shared_memory=False)
model = YOLOv3(num_classes = NUM_CLASSES)  #创建模型
learning_rate = get_lr()
opt = paddle.optimizer.Momentum(
                learning_rate=learning_rate,
                momentum=0.9,
                weight_decay=paddle.regularizer.L2Decay(0.0005),
                parameters=model.parameters())  #创建优化器
# opt = paddle.optimizer.Adam(learning_rate=learning_rate, weight_decay=paddle.regularizer.L2Decay(0.0005), parameters=model.parameters())


if __name__ == '__main__':
    for epoch in range(MAX_EPOCH):
        for i, data in enumerate(train_loader()):
            img, gt_boxes, gt_labels, img_scale = data
            gt_scores = np.ones(gt_labels.shape).astype('float32')
            gt_scores = paddle.to_tensor(gt_scores)
            img = paddle.to_tensor(img)
            gt_boxes = paddle.to_tensor(gt_boxes)
            gt_labels = paddle.to_tensor(gt_labels)
            outputs = model(img)  #前向传播,输出[P0, P1, P2]
            loss = get_loss(NUM_CLASSES, outputs, gt_boxes, gt_labels, gtscore=gt_scores,
                                  anchors = ANCHORS,
                                  anchor_masks = ANCHOR_MASKS,
                                  ignore_thresh=IGNORE_THRESH,
                                  use_label_smooth=False)        # 计算损失函数

            loss.backward()    # 反向传播计算梯度
            opt.step()  # 更新参数
            opt.clear_grad()
            if i % 10 == 0:
                timestring = time.strftime("%Y-%m-%d %H:%M:%S",time.localtime(time.time()))
                print('{}[TRAIN]epoch {}, iter {}, output loss: {}'.format(timestring, epoch, i, loss.numpy()))

        # save params of model
        if (epoch % 5 == 0) or (epoch == MAX_EPOCH -1):
            paddle.save(model.state_dict(), 'yolo_epoch{}'.format(epoch))

        # 每个epoch结束之后在验证集上进行测试
        model.eval()
        for i, data in enumerate(valid_loader()):
            img, gt_boxes, gt_labels, img_scale = data
            gt_scores = np.ones(gt_labels.shape).astype('float32')
            gt_scores = paddle.to_tensor(gt_scores)
            img = paddle.to_tensor(img)
            gt_boxes = paddle.to_tensor(gt_boxes)
            gt_labels = paddle.to_tensor(gt_labels)
            outputs = model(img)
            loss = get_loss(NUM_CLASSES,outputs, gt_boxes, gt_labels, gtscore=gt_scores,
                                  anchors = ANCHORS,
                                  anchor_masks = ANCHOR_MASKS,
                                  ignore_thresh=IGNORE_THRESH,
                                  use_label_smooth=False)
            if i % 1 == 0:
                timestring = time.strftime("%Y-%m-%d %H:%M:%S",time.localtime(time.time()))
                print('{}[VALID]epoch {}, iter {}, output loss: {}'.format(timestring, epoch, i, loss.numpy()))
        model.train()

1.5模型评估

先定义上一节讲解的非极大值抑制,当数据集中含有多个类别的物体时,需要做多分类非极大值抑制,其实现原理与非极大值抑制相同,区别在于需要对每个类别都做非极大值抑制,实现代码如下面的multiclass_nms所示。

# 计算IoU,矩形框的坐标形式为xyxy,这个函数会被保存在box_utils.py文件中
def box_iou_xyxy(box1, box2):
    # 获取box1左上角和右下角的坐标
    x1min, y1min, x1max, y1max = box1[0], box1[1], box1[2], box1[3]
    # 计算box1的面积
    s1 = (y1max - y1min + 1.) * (x1max - x1min + 1.)
    # 获取box2左上角和右下角的坐标
    x2min, y2min, x2max, y2max = box2[0], box2[1], box2[2], box2[3]
    # 计算box2的面积
    s2 = (y2max - y2min + 1.) * (x2max - x2min + 1.)
    
    # 计算相交矩形框的坐标
    xmin = np.maximum(x1min, x2min)
    ymin = np.maximum(y1min, y2min)
    xmax = np.minimum(x1max, x2max)
    ymax = np.minimum(y1max, y2max)
    # 计算相交矩形行的高度、宽度、面积
    inter_h = np.maximum(ymax - ymin + 1., 0.)
    inter_w = np.maximum(xmax - xmin + 1., 0.)
    intersection = inter_h * inter_w
    # 计算相并面积
    union = s1 + s2 - intersection
    # 计算交并比
    iou = intersection / union
    return iou

# 非极大值抑制
def nms(bboxes, scores, score_thresh, nms_thresh, pre_nms_topk, i=0, c=0):
    """
    nms
    """
    inds = np.argsort(scores)
    inds = inds[::-1]
    keep_inds = []
    while(len(inds) > 0):
        cur_ind = inds[0]
        cur_score = scores[cur_ind]
        # if score of the box is less than score_thresh, just drop it
        if cur_score < score_thresh:
            break

        keep = True
        for ind in keep_inds:
            current_box = bboxes[cur_ind]
            remain_box = bboxes[ind]
            iou = box_iou_xyxy(current_box, remain_box)
            if iou > nms_thresh:
                keep = False
                break
        if i == 0 and c == 4 and cur_ind == 951:
            print('suppressed, ', keep, i, c, cur_ind, ind, iou)
        if keep:
            keep_inds.append(cur_ind)
        inds = inds[1:]

    return np.array(keep_inds)

# 多分类非极大值抑制
def multiclass_nms(bboxes, scores, score_thresh=0.01, nms_thresh=0.45, pre_nms_topk=1000, pos_nms_topk=100):
    """
    This is for multiclass_nms
    """
    batch_size = bboxes.shape[0]
    class_num = scores.shape[1]
    rets = []
    for i in range(batch_size):
        bboxes_i = bboxes[i]
        scores_i = scores[i]
        ret = []
        for c in range(class_num):
            scores_i_c = scores_i[c]
            keep_inds = nms(bboxes_i, scores_i_c, score_thresh, nms_thresh, pre_nms_topk, i=i, c=c)
            if len(keep_inds) < 1:
                continue
            keep_bboxes = bboxes_i[keep_inds]
            keep_scores = scores_i_c[keep_inds]
            keep_results = np.zeros([keep_scores.shape[0], 6])
            keep_results[:, 0] = c
            keep_results[:, 1] = keep_scores[:]
            keep_results[:, 2:6] = keep_bboxes[:, :]
            ret.append(keep_results)
        if len(ret) < 1:
            rets.append(ret)
            continue
        ret_i = np.concatenate(ret, axis=0)
        scores_i = ret_i[:, 1]
        if len(scores_i) > pos_nms_topk:
            inds = np.argsort(scores_i)[::-1]
            inds = inds[:pos_nms_topk]
            ret_i = ret_i[inds]

        rets.append(ret_i)

    return rets

运行如下代码启动评估,需要指定待评估的图片文件存放路径和需要使用到的模型参数。评估结果会被保存在pred_results.json文件中。

1.6模型预测

预测流程:

预测过程可以分为两步:

  1. 通过get_pred函数预测框位置和所属类别的得分。
  2. 使用非极大值抑制来消除重叠较大的预测框。

首先定义绘制预测框的画图函数,代码如下。


import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.image import imread
import math

# 定义画图函数
INSECT_NAMES = ['Boerner', 'Leconte', 'Linnaeus', 
                'acuminatus', 'armandi', 'coleoptera', 'linnaeus']

# 定义画矩形框的函数 
def draw_rectangle(currentAxis, bbox, edgecolor = 'k', facecolor = 'y', fill=False, linestyle='-'):
    # currentAxis,坐标轴,通过plt.gca()获取
    # bbox,边界框,包含四个数值的list, [x1, y1, x2, y2]
    # edgecolor,边框线条颜色
    # facecolor,填充颜色
    # fill, 是否填充
    # linestype,边框线型
    # patches.Rectangle需要传入左上角坐标、矩形区域的宽度、高度等参数
    rect=patches.Rectangle((bbox[0], bbox[1]), bbox[2]-bbox[0]+1, bbox[3]-bbox[1]+1, linewidth=1,
                           edgecolor=edgecolor,facecolor=facecolor,fill=fill, linestyle=linestyle)
    currentAxis.add_patch(rect)

# 定义绘制预测结果的函数
def draw_results(result, filename, draw_thresh=0.5):
    plt.figure(figsize=(10, 10))
    im = cv2.imread(filename)
    plt.imshow(im)
    currentAxis=plt.gca()
    colors = ['r', 'g', 'b', 'k', 'y', 'c', 'purple']
    for item in result:
        box = item[2:6]
        label = int(item[0])
        name = INSECT_NAMES[label]
        if item[1] > draw_thresh:
            draw_rectangle(currentAxis, box, edgecolor = colors[label])
            plt.text(box[0], box[1], name, fontsize=12, color=colors[label])

使用前面定义的test_data_loader函数读取指定的图片,输入网络并计算出预测框和得分,然后使用多分类非极大值抑制消除冗余的框。将最终结果画图展示出来。

import json

import paddle

ANCHORS = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]
ANCHOR_MASKS = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
VALID_THRESH = 0.01
NMS_TOPK = 400
NMS_POSK = 100
NMS_THRESH = 0.45

NUM_CLASSES = 7
if __name__ == '__main__':
    image_name = '/home/aistudio/work/insects/test/images/2642.jpeg'
    params_file_path = '/home/aistudio/yolo_epoch50.pdparams'

    model = YOLOv3(num_classes=NUM_CLASSES)
    model_state_dict = paddle.load(params_file_path)
    model.load_dict(model_state_dict)
    model.eval()

    total_results = []
    test_loader = test_data_loader(image_name, mode='test')
    for i, data in enumerate(test_loader()):
        img_name, img_data, img_scale_data = data
        img = paddle.to_tensor(img_data)
        img_scale = paddle.to_tensor(img_scale_data)

        outputs = model.forward(img)
        bboxes, scores = model.get_pred(outputs,
                                 im_shape=img_scale,
                                 anchors=ANCHORS,
                                 anchor_masks=ANCHOR_MASKS,
                                 valid_thresh = VALID_THRESH)

        bboxes_data = bboxes.numpy()
        scores_data = scores.numpy()
        results = multiclass_nms(bboxes_data, scores_data,
                      score_thresh=VALID_THRESH, 
                      nms_thresh=NMS_THRESH, 
                      pre_nms_topk=NMS_TOPK, 
                      pos_nms_topk=NMS_POSK)

result = results[0]
draw_results(result, image_name, draw_thresh=0.4)

二.小结

1)本章系统化的介绍了计算机视觉的各种网络结构和发展历程,并以图像分类和目标检测两个任务为例,展示了ResNet和YOLOv3等算法的实现。

2)在本实验中,我们使用了百度飞桨框架实现了目标检测算法YOLOv3,并将其应用于叶病虫害检测。具体来说,我们通过以下步骤完成了实验:

  1.  数据准备:我们使用了一个包含叶病虫害图像的数据集,并对数据进行了预处理,包括图像增强、标注等。
  2.  模型训练:我们使用了预训练的DarkNet53模型作为基础模型,并在数据集上进行了微调。通过不断调整训练参数,我们得到了一个在叶病虫害检测任务上表现良好的模型。
  3.  模型评估:我们使用了mAP指标对模型进行了评估,并对模型的检测结果进行了可视化展示。实验结果表明,我们的模型在叶病虫害检测任务上具有较高的准确率和召回率。

总的来说,本实验通过实践的方式介绍了目标检测算法YOLOv3的实现过程,并将其应用于叶病虫害检测。通过本实验,我们可以了解到目标检测算法的基本原理和实现方法,同时也可以学习到如何使用百度飞桨框架进行深度学习任务的开发。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值