各类路径规划算法对比(二)

文章探讨了在动态环境中,正向搜索与反向搜索的优劣,强调了启发式搜索如A*算法在提高效率方面的优势,以及增量式搜索如D*Lite算法如何利用先前信息更新路径。同时指出,两者在处理动态规划和避免全局搜索方面的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、搜索方向的正反

        在静态环境中全局地图信息已知,则无论正向搜索还是反向搜索都可以发挥效能。但是在动态环境中,面对未知地图,要想获得最短路径则需要不断的尝试,正向搜索很容易产生与最优路径背道而驰的现象,而此时反向搜索算法能够很好的处理这种情况。反向搜索配合增量式搜索使得D* lite算法在动态障碍图中,可以利用先前迭代中产生的节点距离信息,不断更新当前点到目标点的最优路径。而在正向搜索中,增量式算法只能提供当前点到起始点的距离信息和到目标点的启发估计信息,并不能保证未搜索区域的可通行性。

2、启发式与非启发式

       启发式算法能够在每次搜索时将搜索方向导向目标点,替代了非启发式算法向四周无规则遍历的局限,正常情况下能够大大提高搜索效率。但是在启发式路径受阻的情况下,搜索效果将适得其反。

3、启发式与增量式

        启发式搜索是利用启发函数来对搜索进行指导,从而实现高效的搜索,启发式搜索是一种“智能”搜索,典型的算法例如A *算法、遗传算法等。增量搜索是对以前的搜索结果信息进行再利用来实现高效搜索,大大减少搜索范围和时间,典型的例如LPA *、D * Lite算法等。
搜索方向的正反多与是否能处理动态规划有关;启发式搜索带来的时效能的提高,避免全局盲目搜寻;增量式搜索则代表着迭代信息的二次利用,多用于提高算法效率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值