1.Precision和Recall的理解

文章介绍了精确率、召回率和准确率的基本公式,以及它们在预测模型中的作用。TP表示预测正确的正例,FP是预测错误的正例,FN是预测错误的负例。提高置信度会增加TP,减少FP,从而提升精确率但可能降低召回率;反之,降低置信度会增加TP和FP,影响精确率与召回率的平衡。
摘要由CSDN通过智能技术生成

0.基本公式

        Arecision(精确率)计算公式: Precision=TP/(TP+FP)

        Recall(召回率)计算公式: Recall=TP/(TP+FN)

        Accuracy(准确率)计算公式: Accuracy=TP+TN/Total

1.基本概念(记三个就行)

        TP: true positive         预测正确 的正例(本是正例 预测成了正例))

        FP: false positive        预测错误 的正例(不是正例 预测成了正例)

        FN: false negative       预测错误 的负例(本是负例 预测成了正例)

小结论:

        置信度提高→TP↓,FP↓↓→precision↑,recall↓ → 提虚检,降拒真

        置信度降低→TP↑,FP↑↑→precision↓,recall↑ → 提拒真,降虚检

 2.样例

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值