3199 [HNOI2009] 最小圈

文章描述了一个编程竞赛题目,涉及图论中的最小圈问题,给出了输入输出格式,并介绍了使用SPFA(最短路径优先搜索法)在连通且存在圈的图中找到一个特定点到其他所有点的最短距离。
摘要由CSDN通过智能技术生成

# [HNOI2009] 最小圈

## 题目描述

## 输入格式

第一行两个正整数,分别为 $n$ 和 $m$,并用一个空格隔开。其中 $n=|V|$,$m=|E|$ 分别表示图中有 $n$ 个点 和 $m$ 条边。

接下来 $m$ 行,每行三个数 $i,j,w_{i,j}$,表示有一条边 $(i,j)$ 且该边的权值为 $w_{i,j}$,注意边权可以是实数。输入数据保证图 $G=(V,E)$ 连通,存在圈且有一个点能到达其他所有点。

## 输出格式

一个实数 $\mu'(G)$,要求精确到小数点后 $8$ 位。

## 样例 #1

### 样例输入 #1

```
4 5
1 2 5
2 3 5
3 1 5
2 4 3
4 1 3
```

### 样例输出 #1

```
3.66666667
```

## 样例 #2

### 样例输入 #2

```
2 2
1 2 -2.9
2 1 -3.1
```

### 样例输出 #2

```
-3.00000000
```

## 提示

对于 $100\%$ 的数据,$2\leq n\le 3000$,$1\leq m\le 10000$,$|w_{i,j}| \le 10^7$,$1\leq i, j\leq n$ 且 $i\neq j$。

------------
提示:本题存在 $O(nm)$ 的做法,但是 $O(nm\log n)$ 的做法也可以通过。

// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define ld long double
#define eps 1e-10
//This code is written by Itst
using namespace std;

inline int read(){
    int a = 0;
    bool f = 0;
    char c = getchar();
    while(c != EOF && !isdigit(c)){
        if(c == '-')
            f = 1;
        c = getchar();
    }
    while(c != EOF && isdigit(c)){
        a = (a << 3) + (a << 1) + (c ^ '0');
        c = getchar();
    }
    return f ? -a : a;
}

const int MAXN = 3010 , MAXM = 10010;
struct Edge{
    int end , upEd;
    ld w;
}Ed[MAXM];
ld minDis[MAXN];
int head[MAXN] , flo[MAXN] , N , M , cntEd;
queue < int > q;
bool inq[MAXN] , vis[MAXN];

inline void addEd(int a , int b , ld c){
    Ed[++cntEd].end = b;
    Ed[cntEd].upEd = head[a];
    head[a] = cntEd;
    Ed[cntEd].w = c;
}

/*bool SPFA(){
    memset(minDis , 0 , sizeof(minDis));
    for(int i = 1 ; i <= N ; ++i){
        if(!inq[i]){
            inq[i] = 1;
            q.push(i);
        }
        flo[i] = 1;
    }
    while(!q.empty()){
        int t = q.front();
        q.pop();
        inq[t] = 0;
        for(int i = head[t] ; i ; i = Ed[i].upEd)
            if(minDis[Ed[i].end] > minDis[t] + Ed[i].w + eps){
                minDis[Ed[i].end] = minDis[t] + Ed[i].w;
                flo[Ed[i].end] = flo[t] + 1;
                if(flo[Ed[i].end] > N)
                    return 1;
                if(!inq[Ed[i].end]){
                    inq[Ed[i].end] = 1;
                    q.push(Ed[i].end);
                }
            }
    }
    return 0;
    }*/
bool SPFA(int now){
    vis[now] = 1;
    for(int i = head[now] ; i ; i = Ed[i].upEd)
        if(minDis[Ed[i].end] > minDis[now] + Ed[i].w)
            if(vis[Ed[i].end])
                return 1;
            else{
                minDis[Ed[i].end] = minDis[now] + Ed[i].w;
                if(SPFA(Ed[i].end))
                    return 1;
            }
    vis[now] = 0;
    return 0;
}

inline void add(ld num){
    for(int i = 1 ; i <= cntEd ; ++i)
        Ed[i].w += num;
}

bool check(ld mid){
    bool f = 0;
    add(-mid);
    memset(minDis , 0 , sizeof(minDis));
    memset(vis , 0 , sizeof(vis));
    for(int i = 1 ; !f && i <= N ; ++i)
        if(minDis[i] > -1e-8 && minDis[i] < 1e-8)
            f = SPFA(i);
    add(mid);
    return f;
}

int main(){
#ifndef ONLINE_JUDGE
    freopen("3199.in" , "r" , stdin);
    //freopen("3199.out" , "w" , stdout);
#endif
    N = read();
    M = read();
    for(int i = 1 ; i <= M ; ++i){
        int a = read() , b = read();
        ld c;
        scanf("%Lf" , &c);
        addEd(a , b , c);
    }
    ld L = -1e7 , R = 1e7;
    while(R - L > eps){
        ld mid = (L + R) / 2;
        check(mid) ? R = mid : L = mid;
    }
    printf("%.8Lf" , L);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

内测人员

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值