统计学习方法——测试误差和训练误差区别

测试误差和训练误差是机器学习中常见的两个概念,它们分别指模型在测试集和训练集上的误差。

训练误差是指模型在训练集上的误差,反映的是模型的学习能力。它是模型关于训练数据集的平均损失,用于评估模型在训练数据上的表现。在训练过程中,我们通常会通过优化算法来最小化训练误差,以提高模型的拟合能力。

测试误差是指模型在测试集上的误差,反映的是模型对未知数据的预测能力。换言之,测试误差是模型在新数据上的平均损失,这样可以评估模型的泛化能力。测试误差小的模型通常具有更好的泛化性能。

简单来说,训练误差和测试误差的主要区别在于他们所评估的数据集不同。训练误差关注模型在训练集上的表现,主要是为了提高模型的拟合能力;而测试误差关注模型在从未见过的数据上的表现,以此来评估模型的泛化能力

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值