Luogu P1902,刺杀大使
这道题真的是一道DFS和二分进阶的好题哇
看到这道题,“路径”“伤害值”等词语让我瞬间联想到万能的DFS,搜索所有能到达最后一排房间的路径,比较出最小伤害值。
#include <iostream>
#include <cstring>
using namespace std;
int n, m, ans = 1000000000;
int harm[1005][1005];//每个房间的伤害值
//转向数组
int cx[5]={0, 1, -1, 0, 0};
int cy[5]={0, 0, 0, 1, -1};
//标记数组
bool mark[1005][1005];
bool check(int x, int y){
if(x <= 0 || x > n || y <= 0 || y > m)return 0;//是否越界
if(mark[x][y])return 0;//是否走过
return 1;
}
int maxx(int x, int y){
return x > y ? x : y;
}
void search(int x, int y, int get_harm){
if(x == n){
if(get_harm < ans)ans = get_harm;
return ;
}
for(int i = 1; i <= 4; i++){
int xx = x + cx[i];
int yy = y + cy[i];
if(check(xx, yy)){
mark[xx][yy] = 1;//标记走过
search(xx, yy, maxx(get_harm, harm[xx][yy]));
mark[xx][yy] = 0;//回溯
}
}
}
int main(){
cin >> n >> m;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++){
cin >> harm[i][j];
}
search(1, 1, 0);
cout << ans;
return 0;
}
果不其然,全部超时…但是没有 W r o n g A n s w e r Wrong Answer WrongAnswer,说明方法并没有完全错,只是需要进行优化
那就用万能的记忆化大法吧
在所有操作开始前,即主函数的一开始,将 m e m o r y memory memory数组初始化为极大值,然后在DFS的最开始进行判断,如果目前的伤害值大于之前道路在这个点时的伤害值,那么就可以放弃本条道路了(后续途径点都一样,但是本条道路已途径的部分不是最优);而如果目前的伤害值在已搜过的道路中最小,那么就更新最小伤害值,并继续向后搜索。
if(get_harm >= memory[x][y])return ;
else memory[x][y] = get_harm;
成功优化到了50分
记忆化搜索是不可能再优化了,因此我们需要找到一个能够使搜索次数更少,速度更快的优化方法——二分
二分的左边界为所有房间中最小的伤害值,右边界为所有房间中最大的伤害值,不断取 m i d mid mid。
在这个二分中, m i d mid mid就是我们假定的最大伤害值。在搜索过程中,不断对 m i d mid mid与当前房间伤害值进行比较,如果 m i d mid mid大于当前房间伤害值,那么说明这条道路不符合设想,放弃。如果一条道路可以一直搜索下去,直到最后一排,那么当前的 m i d mid mid就可以是最大伤害值,但是不一定是最小的。因此先标记可行,然后再将右边界放在 m i d mid mid左边,看看有没有更小的最大伤害值。如果以当前 m i d mid mid为最大伤害值,却无论如何也走不到最后一排,那么将左边界放在 m i d mid mid右边,即最大伤害值一定大于 m i d mid mid
最后直接输出右边界即可
最坏的时间也只有 1 0 7 10^7 107左右,根本不会超时
#include <iostream>
#include <cstring>
using namespace std;
int n, m, ans = 1000000000;
int harm[1005][1005];
int cx[5]={0, 1, -1, 0, 0};
int cy[5]={0, 0, 0, 1, -1};
bool mark[1005][1005];
int l, r;
bool flag;
bool check(int x, int y, int mid){
if(x <= 0 || x > n || y <= 0 || y > m)return 0;
if(mark[x][y])return 0;
if(harm[x][y] > mid)return 0;
return 1;
}
int maxx(int x, int y){
return x > y ? x : y;
}
int minn(int x, int y){
return x < y ? x : y;
}
void search(int x, int y, int num){
if(x == n){//可以走到 最后一排
flag = 1;//标记可行
return ;
}
for(int i = 1; i <= 4; i++){
int xx = x + cx[i];
int yy = y + cy[i];
if(check(xx, yy, num)){
mark[xx][yy] = 1;//标记走过
search(xx, yy, num);
if(flag)return ;//无论如何也走不到最后一排
}
}
}
int main(){
cin >> n >> m;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++){
cin >> harm[i][j];
r = maxx(r, harm[i][j]);
l = minn(l, harm[i][j]);
}
while (l <= r){
int mid = (l + r) >> 1;
flag = 0;
memset(mark, 0, sizeof(mark));//清空标记数组以进行下一轮搜索
search(1, 1, mid);
if(!flag)l = mid+1;
else r = mid-1;
}
cout << l;
return 0;
}