【毕业设计_课程设计】基于大数据个性化音乐推荐算法分析


0 前言

基于大数据个性化音乐推荐算法分析

提示:适合用于课程设计或毕业设计,工作量达标,源码开放


1 研究目的

音乐推荐算法,就是针对音乐自身的内容特征以及用户的听歌行为,为广大用户提供可能符合他们兴趣爱好的歌曲的算法。而基于大数据的个性化音乐推荐算法,能够通过历史数据,别的用户的历史数据分析出潜在的喜好相似性,为用户更准确地挖掘出潜在的喜欢的音乐。

1995年,Ringo算法的开发成就了历史上第一个推荐算法,可以向用户推荐他们喜欢的音乐并预测用户对特定音乐的评分,之后一段时间内,音乐推荐都是基于音乐曲目的基本信息产生,缺乏针对性。国外著名网站Pandora和Last.fm是最早提出音乐个性化推荐的网站。Pandora的音乐推荐算法主要来源于音乐基因工程(music gene)的项目,根据这些基因计算歌曲的相似度,给用户推荐基因相似度高的音乐。国内也涌现了一些优秀的音乐推荐网站如豆瓣电台、虾米音乐、网易云音乐等等,根据用户平时推荐给好友的歌曲,听歌行为以及歌曲收录信息,找到“相似的品味者”,更好的做出推荐。

本文针对传统基于用户或者基于物品的协同过滤推荐方法在复杂场景下对用户进行音乐推荐占用内存大计算速度慢等缺点,提出一种基于LightGBM决策树算法的音乐推荐算法,使用相关性分析和稳定性选择中的随机逻辑回归进行特征选择,采用数值特征取代个体特征进行用户对音乐的喜好预测,根据不同的候选集,可以形成不同推荐列表。采用kkbox音乐公司公布在Kaggle比赛平台上的用户、音乐、用户操作信息进行验证,预测准确率高达76%,训练时间9min,优于该比赛第一名用户算法的准确率68.4%。采用的算法模型可拓展性强,计算效率高,占用内存小,可以迁移到其它类型的推荐系统中。

2 研究方法

2.1 传统推荐算法

传统的推荐系统方法包括基于内容推荐过滤、基于规则的推荐、协同过滤推荐。

基于内容的过滤推荐根据物品的元数据,计算物品的相似性,然后基于用户的历史行为推荐给用户相似的物品;基于规则的推荐常使用于电子商务系统,大量的交易数据中获取关联规则或者按照时间购买商品的序列模型,进行物品之间的相互推荐;协同过滤包括基于用户的协同过滤和基于物品的协同过滤;基于用户的协同过滤通过分析用户历史行为,计算用户之间相似度,利用用户相似度和用户的历史行为给用户形成推荐列表。基于物品的协同过滤与之类似,分析用户行为计算物品之间的相似度,然后根据用户的历史偏好信息,将类似的物品推荐给用户。

2.2 基于LightGBM决策树模型的推荐算法

决策树算法的发展过程从C3.0(基于信息增益) CART(基于基尼系数) 提升树(AdaBoost) 梯度提升树(GDBT) XGBosot LightGBM算法。

基于决策树模型的推荐算法具有以下优点:(1)可以并行化训练;(2)能够处理离散连续特征值和类别特征,不用对特征做归一化;(3)能够处理缺失值;(4)可以处理高维特征。
LightGBM(Light Gradient Boosting Machine)是2017年8月微软公司开源的基于决策树算法的分布式梯度提升框架,和之前的提升框架相比有更快的训练效率,更低的内存使用,更高的准确率,支持并行化学习,可以处理大规模数据等优点,可以用于排序,分类和许多其他机器学习任务。
Boosting算法(提升法)指的是迭代算法,核心思想是对训练样本进行k次迭代,每次迭代形成一个弱学习器,然后根据学习误差对分类错误的样本加大训练权重,形成新的带有权重的训练集,训练形成新的弱学习器;最后将这些弱学习器根据结合策略形成一个强学习器。

此外LightGBM利用Histogram的决策树算法,先把连续的浮点特征值离散化为k个整数,构造一个宽度为k的直方图,如图2.2所示,遍历数据时,根据离散化后的值作为索引在直方图中累积统计量,然后根据直方图的离散值,遍历寻找最优的分割点。使用直方图算法因为只保存特征离散化后的值,内存消耗可以降低为原来的1/8左右;此外计算的成本也大大降低,因为预排序算法每遍历一个特征值就需要计算一次分裂的增益,而直方图算法只用计算k(k为直方的个数),时间复杂度从从O(datafeature)优化到O(kfeatures)。

和Xgboost采用level-wise策略相比,LightGBM采用更高效Leaf-wise策略(如图2.3所示),每次从当前所有叶子中,找到分裂增益最大的一个叶子,然后分类,如此循环,和Level-wise相比,分裂次数相同的情况下,可以降低更多的误差,获得更高的精度。同时LightGBM可以通过最大深度的限制防止过拟合。

并且最新的LightGBM可以自动处理缺失值,可以进一步优化类别特征(Categorical Feature),不再使用类似one-hot coding的分割方式,对于类别数量很多的类别特征采用one-vs-other的切分方式长出的不均衡的树,采用many-vs-many的切分方式,寻找最优分割。

3 研究结论

本文采用新的ligthgbm算法对用户是否会在一个月内重复收听某一首歌曲进行预测,以此作为个性化推荐的目标。通过分析数据特征,使用相关性以及稳定性选择等方法选择特征,随后通过对训练输入数值特征,分类特征和全部特征的性能比较,创新性选择用数值特征完全取代分类特征去训练模型进行预测,使得模型在有效性和准确性上都有稳定的提升,对于其余需要再分类特征上建模的实验具有参考意义。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
由图二可知,对于同一个用户,设置不同的候选集,可以有不同的推荐列表,支持音乐服务商使用多种推荐方式,也可以综合多个候选集,建立混合推荐的推荐列表。

由图三可知,对于不同用户,因为其它用户特征的不同,对于相同的候选集,也可以生成不同的推荐列表,符合个性化推荐的要求。

4 最后

  • 5
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
python基于深度学习的音乐推荐方法研究系统(django) 深度学习;音乐推荐;Python;KNNBaseline;python;django;mysql; 本次的研究是基于使用自动编码器,通过与卷积神经网络相结合,以挖掘音频、歌词本身的非线性特征,来实现很好的音乐推荐、音乐查找识别的功能实现,并将内容特征与协同过滤共同作用,训练紧耦合模型。通过此次的系统搭建与开发,能够通过深度学习的方式让系统可以实现按照用于的喜好来进行音乐的推荐的功能实现。 主要功能: 一款好的音乐推荐系统其目的是为用户进行合理的音乐推荐,普通的用户在登录到系统之后,能够通过搜索的方式获取与输入内容相关的音乐推荐,而以管理员登录到系统之后,则可以进行徐昂管的数据管理等内容操作。此次的需求主要有以下的一些方面: (1)用户的登录过程实现,要实现为用户的个性化推荐,需要以登录的方式来方便用户使用该系统,通过系统的登录来实现搜索和推荐的功能实现; (2)对音乐的标签设定,通过给音乐添加标签的方式来方便同类型的音乐推荐的功能实现; (3)歌曲的推荐功能,通过用户输入歌名或者是关键词来展示与歌名和关键词相似度高的歌曲的推荐,形成歌曲的推荐; (4)在歌曲的推荐中,通过系统的推荐算法来形成歌曲的推荐排名,从而向用户推荐相关性高的前十大歌曲。
### 回答1: 基于Python的音乐推荐系统主要分为以下步骤: 1. 数据获取:从音乐平台API获取音乐库的数据,包括歌曲信息、歌手信息、专辑信息和用户行为。 2. 数据预处理:根据需求对数据进行清洗、去重、归一化和特征提取等处理,以便后续建模和分析。 3. 数据分析和建模:根据用户的历史听歌数据和标签数据,使用机器学习算法和推荐算法,建立推荐模型,预测用户的喜好和推荐相似的歌曲。 4. 推荐系统部署:将建立好的模型集成到推荐系统中,提供给用户个性化的推荐服务。 5. 用户反馈数据收集和处理:从用户反馈中获取歌曲评分、评论和播放次数等数据,对模型进行优化和改进,提升推荐效果。 6. 推荐结果可视化:通过网页、APP等途径将推荐结果展示给用户,并提供歌曲的试听、下载和分享等功能,以提升用户体验和赢得用户忠诚度。 在实际的推荐系统开发中,还需要考虑系统的性能、可扩展性、安全性和隐私保护等问题,以确保系统能够正常运行并满足用户需求。 ### 回答2: 基于Python的音乐推荐系统实现步骤如下: 1.数据收集与处理 首先需要获取音乐数据,可以通过公开API或爬虫技术进行收集。收集到的数据需要进行去重、筛选、转换格式等处理,使其符合推荐系统的要求。 2.特征提取与建模 音乐推荐系统需要对音乐数据进行特征提取,例如萃取出歌曲的流派、主唱、歌曲长度、歌词等特征。然后针对这些特征,建立推荐模型,可以选用基于内容、协同过滤、深度学习等模型。 3.用户画像与行为分析 用户画像是指对用户的特征和兴趣进行详细描述,以便推荐系统根据用户画像进行精准推荐。用户行为分析则是针对用户的历史行为数据进行分析,了解用户的兴趣、习惯等。 4.推荐算法设计 推荐算法是核心,不同的算法设计不同的计算方法,例如协同过滤算法、基于内容的过滤算法等。选用适合的算法,根据特定的场景进行调整和优化,从而提高推荐系统的准确度。 5.系统实现与测试 基于以上步骤,利用Python语言实现推荐系统,并进行测试。测试结果需要专业的评测指标来进行评估,例如准确度、召回率、F值等。 在实际应用中,还需要考虑一些其他因素,例如数据安全和用户隐私保护、推荐结果多样性和新颖性的平衡等。 这些因素也需要用相应的算法和技术进行处理。 ### 回答3: 基于Python的音乐推荐系统实现步骤如下: 1. 数据获取及预处理:首先需要获取音乐数据,可以通过网页抓取、API、爬虫等方式获取音乐总数、艺术家、歌曲、歌词、发行日期、风格、流派等信息。接着,对音乐数据进行清洗、去重、格式转换等预处理工作。 2. 构建用户画像:用户画像是基于用户评价和行为生成的信息模型,涉及到用户的基本信息、兴趣爱好、社交关系、历史行为等。通过数据挖掘、机器学习等技术可以构建出用户画像。 3. 特征提取:从音乐数据中提取出有价值的特征,比如:歌曲类别、艺术家、发行日期、流派、语音特征等,将其转成数字形式。 4. 相似度计算:计算用户画像和每首歌曲之间的相似度。计算相似度可以使用余弦相似度、Pearson相关系数等,可以根据不同的应用场景及数据特征选择合适的算法。 5. 推荐算法:设定一定的推荐策略,将计算得到的相似度与用户画像匹配,选择与用户画像最匹配的歌曲进行推荐。 6. 反馈及优化:用户对推荐系统的反馈是评估推荐系统好坏的重要指标,可以通过用户行为、满意度问卷、热度等方式收集用户反馈,根据反馈优化推荐算法。 7. 实现和部署:根据具体业务需求选择相应的框架和工具,实现推荐算法,并部署到线上环境中进行测试和运行。 总之,基于Python的音乐推荐系统实现步骤包括数据获取及预处理、构建用户画像、特征提取、相似度计算、推荐算法、反馈及优化和实现和部署。不同的场景需要选择合适的算法和框架,并不断优化完善,以实现更好的用户体验和商业效益。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值