数据结构Day01

1章 顺序表和单链表

1. 基本概念

数据结构是一门研究如何有效组织数据,并提高数据处理效率的学科。通过研究各种数据内
部的逻辑关系,使用某种特定的存储形式,并在此基础上对数据实施各种操作,这些工作被
称为称为广义上的算法。
  • 逻辑结构
    • 指数据之间的内在关系。通常有集合、线性表、树、图等常见的逻辑结构。
    • 逻辑结构是数据之间本身的属性,跟我们怎么处理它们无关。

线性关系:各个元素之间是一种一对一的关系,比如图书馆中的书架的书,除了首尾两本书
之外,其余的任意一本书的编号假设是 N ,都有且仅有一个直接前驱节点 N-1 ,有且仅有一个
直接后继节点 N+1 。这种关系就是典型的线性逻辑。

非线性关系:与上述线性关系的表述不同,如果各个元素之间不是严格一对一的关系,则被
称为非线性关系,比如家族中的各个成员、不同城市间的交通道路等,对于它们中间的某个
元素,都可能有不止一个元素与之关联。这种关系是典型的非线性逻辑。

  • 存储形式
    • 数据的存储方式。比如顺序存储、链式存储等。
    • 不同的存储形式对最终数据的处理效率通常有很大的影响。
    • 逻辑结构与存储形式并无必然联系。

2. 算法分析【了解】

算法分析是指算法在正确的情况下,对其优劣的分析。一个好的算法通常是指:
 
        1. 算法对应的程序所耗时间少
 
        2. 算法对应的程序所耗存储空间少
 
        3. 算法结构性好、易读、易移植和调试

 
数据结构与算法的本质任务,是提高程序的时间空间效率,简单讲就是让程序的执行速度越
快越好,所需内存空间越少越好。虽然在很多情况下,程序的时空特性是相互制约的,就像
鱼和熊掌不可兼得,但我们可以根据程序实际解决问题的侧重点,去平衡时间和空间的对性
能的消耗。

2.1 时间复杂度

一般而言,时间复杂度并不考察一段代码运行所需要的绝对时间,因为不同的计算机的硬件
参数不同,考察绝对时间没有意义。时间复杂度一般指的是代码的语句执行总次数,称为语
句频度。比如:
void counting(int n)
{
  for (int i = 0; i < n; i++)
  {
    printf("本行语句将会出现n次\n");
    for (int j = 0; j < n; j++)
    {
      printf("本行语句将会出现n*n次\n");
    }
  }
}
在上述代码中,程序执行的语句频度理论是: T(n) = n^2 + n
但一般情况下,我们只关心多项式的最高次幂,于是上述代码的时间复杂度我们表示为:


                                                T(n)=O(n^2)

这意味着,该程序算法所需要的时间,与传进来的参数n的平方成正比。

不同算法的时间复杂度相差很大,如下图所示,随着所处理的问题规模的增大,不同时间复
杂度的程序所需要的时间有天壤之别。

2.2 空间复杂度

空间复杂度的概念更简单一点,就是一段程序运行时所需的内存字节量。
 

2.3 时空复杂度互换

一段程序的性能指标,既要运行快速,又要节省内存,而通常这两者又是相互制约的,很难
兼得。因此在实际解决问题时,会根据需要侧重一方,牺牲另一方。

3. 线性表

3.1 概念

对于一组拥有 n 个数据元素的线性表,其严格数学定义是:其中任何一个数据元素a_{i} ,有且仅
有一个直接前驱a_{i-1},有且仅有一个直接后继a_{i+1}。首元素a_{0}无直接前驱,尾元素a_{n-1}无直接后继。
满足这种数学关系的一组数据,当中的数据是一个挨着一个的,常被称为一对一关系。反之,如果数据之间的关系不是一对一的,就是非线性的。

3.2 举例

生活中的线性表例子非常多,比如一个班级中的以学号编排的学生,一座图书馆中的以序号
编排的图书、一条正常排队等候的队列、一摞从上到下堆叠的餐盘,这些都是线性表。他们
的特点都是:除了首尾两个元素,其余任何一个元素前后都对应相邻的另一个元素。

                            

注意:
 
线性表是一种数据内部的逻辑关系,与存储形式无关
线性表既可以采用连续的顺序存储,也可以采用离散的链式存储

                                

4. 顺序表

4.1 基本概念

  • 顺序表:顺序存储的线性表。
  • 链式表:链式存储的线性表,简称链表。
顺序存储就是将数据存储到一片连续的内存中,在 C 语言环境下,可以是具名的栈数组,或者
是匿名的堆数组。
 
存储方式不仅仅只是提供数据的存储空间,而是必须要能体现数据之间的逻辑关系。当采用
顺序存储的方式来存放数据时,唯一能用来表达数据间本身的逻辑关系的就是存储位置。比
如队列中的两个人,小明和小花,如果小明在逻辑上排在相邻的小花的前面,那么在存储位
置上也必须把小明存放在相邻的小花的前面。

                                        

4.2 基本操作

  • 顺序表设计
    一般而言,为了方便操作顺序表,需要一个专门管理顺序表的 管理结构体 ,管理结构体
    中一般会包含:
     
      1. 顺序表总容量
     
      2. 顺序表当前最末元素下标位置
     
      3. 顺序表指针
下面是管理结构体示例代码:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef struct
{
  int capacity; // 顺序表容量
  int last;     // 最末元素下标
  int *data;    // 顺序表,以整型数据为例
} sequenceList;
  • 初始化
    所谓初始化就是建立一个不包含任何元素的顺序表,设置好管理结构体中的表的总容量、
    末元素下标,申请好顺序表内存空间等系列准备工作。
下面是初始化顺序表的示例代码:
sequenceList *init_list(int cap)
{
  sequenceList *list = malloc(sizeof(sequenceList));
  if (list != NULL)
  {
    list->data = malloc(sizeof(int) * cap);
    if (list->data == NULL)
    {
      free(list);
      return NULL;
    }
    list->capacity = cap;
    list->last = -1;
  }
  return list;
}
测试
int main()
{
  sequenceList *list = init_list(10);

  if (list == NULL)
  {
    perror("初始化顺序表失败!");
    exit(0);
  }
  else
  {
    printf("初始化顺序表成功!\n");
  }
}
  • 增删节点
    在顺序表中增加一个数据,可以有多种方式,比如在原数组的末尾增加,或者在原数组的
    头部增加,或者在数组中间任意一个位置增加。根据实际需要来定。
下面以在顺序表头部增删数据为例,示例代码如下:
// 判定顺序表是否为空
bool isEmpty(sequenceList *s)
{
  return s->last == -1;
}
// 判定顺序表是否已满
bool isFull(sequenceList *s)
{
  return s->last == s->capacity - 1;
}
// 在顺序表表头插入一个新数据
bool insert(sequenceList *s, int data)
{
  if (isFull(s))
    return false;
  // 将原有数据全部往后挪一位
  for (int i = s->last; i >= 0; i--)
    s->data[i + 1] = s->data[i];
  // 将新数据置入表头
  s->data[0] = data;
  s->last++;
  return true;
}

// 将顺序表表头的数据删除掉
bool removeNode(sequenceList *s)
{
  if (isEmpty(s))
    return false;
  // 将所有数据全部往前挪一位
  for (int i = 0; i < s->last; i++)
    s->data[i] = s->data[i + 1];
  s->last--;
  return true;
}
  • 销毁顺序表

    一个顺序表最后不再需要,应当要释放其所占用的内存空间,这被称为顺序表的销毁。
下面是销毁操作的示例代码:
void destroy(sequenceList *s)
{
  if (s == NULL)
    return;
  free(s->data);
  free(s);
}

4.3 完整代码

  • seqlist.h
    #ifndef __SEQLIST_H
    #define __SEQLIST_H
    #include <stdio.h>
    #include <stdlib.h>
    #include <string.h>
    #include <stdbool.h>
    typedef struct
    {
      int capacity; // 顺序表容量
      int last;     // 最末元素下标
      int *data;    // 顺序表,以整型数据为例
    } sequenceList;
    // 初始化顺序表
    sequenceList *init_list(int cap);
    // 判断顺序表是否写满
    bool isFull(sequenceList *list);
    // 向顺序表插入数据
    bool insert(sequenceList *s, int data);
    // 非空校验
    bool isEmpty(sequenceList *list);
    // 遍历顺序表
    void show(sequenceList *list);
    // 删除顺序表数据
    bool removeNode(sequenceList *list, int data);
    // 释放内存
    void destroy(sequenceList *s);
    #endif
  • seqlist.c
    #include "seqlist.h"
    sequenceList *init_list(int cap)
    {
      sequenceList *list = malloc(sizeof(sequenceList));
      if (list != NULL)
      {
        list->data = malloc(sizeof(int) * cap);
        if (list->data == NULL)
        {
          free(list);
          return NULL;
        }
        list->capacity = cap;
        list->last = -1;
      }
      return list;
    }
    bool isFull(sequenceList *list)
    {
      return list->last == list->capacity - 1;
    }
    // 在顺序表表头插入一个新数据
    bool insert(sequenceList *s, int data)
    {
      if (isFull(s))
        return false;
      // 将原有数据全部往后挪一位
      for (int i = s->last; i >= 0; i--)
        s->data[i + 1] = s->data[i];
      // 将新数据置入表头
      s->data[0] = data;
      s->last++;
      return true;
    }
    // 判断是否为空
    bool isEmpty(sequenceList *list)
    {
      return list->last == -1;
    }
    // 查看当前顺序表的元素
    void show(sequenceList *list)
    {
      if (isEmpty(list))
      {
        return;
      }
      for (int i = 0; i <= list->last; i++)
        printf("%d\t", list->data[i]);
      printf("\n");
    }
    // 将顺序表中指定的某个元素删除掉
    bool removeNode(sequenceList *list, int data)
    {
      if (isEmpty(list))
        return false;
      // 找到要删除的节点的位置
      int i, pos = -1;
      for (i = 0; i <= list->last; i++)
      {
        if (list->data[i == data])
        {
          pos = i;
          break;
        }
      }
      // 找不到要删除的元素
      if (i > list->last)
      {
        return false;
      }
      // 将所有数据全部往前挪一位
      for (int i = 0; i < list->last; i++)
        list->data[i] = list->data[i + 1];
      list->last--;
      return true;
    }
    // 释放内存
    void destroy(sequenceList *s)
    {
      if (s == NULL)
        return;
      free(s->data);
      free(s);
    }
    int main()
    {
      // 创建顺序表
      sequenceList *list = init_list(10);
      if (list == NULL)
      {
        perror("初始化顺序表失败!");
        exit(0);
      }
      else
      {
        printf("初始化顺序表成功!\n");
      }
      // 测试向顺序表插入/删除信息
      int n;
      while (true)
      {
        scanf("%d", &n);
        if (n > 0)
        {
          // 插入
          if (!insert(list, n))
          {
            printf("容量已满,插入失败!\n");
            continue;
          }
        }
        else if (n < 0)
        {
          // 删除
          if (!removeNode(list, -n))
          {
            printf("查无此数,删除失败!\n");
            continue;
          }
        }
        // 遍历
        show(list);
      }
      // 释放
      destroy(list);
    }

「课堂练习1

创建一个顺序表,并从键盘接收数字输入,将输入的正整数按从小到大的顺序插入顺序表,
并在输入负整数的时候将其绝对值数据删除。每次输入后,将顺序表的内容打印到屏幕上。

                                                

解析
此题考查顺序表的基本思路,先要设计好顺序表的逻辑表达,再通过对顺序表的插入和删除
操作,体会顺序存储中对于插入和删除的不便性。
参考代码
#include <stdio.h>
#include <stdbool.h>
#include <stdlib.h>
typedef struct
{
  int total_size; // 顺序表总容量
  int last;       // 顺序表最末元素的下标
  int *data;      // 顺序表的存储空间
} sqlist;
// 初始化一个空的顺序表
sqlist *init_list(int total_size)
{
  sqlist *sq = (sqlist *)malloc(sizeof(sqlist));
  if (sq != NULL)
  {
    sq->total_size = total_size;
    sq->last = -1; // 用-1表征当前没有元素
    sq->data = (int *)malloc(sizeof(int) * total_size);
    if (sq->data == NULL)
    {
      free(sq);
    }
  }
  return sq;
}
// 在递增的顺序表中找到x应插入的合适位置
int get_pos(sqlist *sq, int x)
{
  int pos = 0;
  while ((pos <= sq->last) && (sq->data[pos] < x))
    pos++;
  // 当链表为空(即sq->last为-1时),返回0
  return pos;
}
// 判断顺序表是否已满
bool is_full(sqlist *sq)
{
  return sq->last >= sq->total_size - 1;
}
// 将元素x插入顺序表sq中
bool insert(sqlist *sq, int x)
{
  if (is_full(sq))
    return false;
  // 在顺序表中得到即将要插入的元素x的合适的位置
  int pos = get_pos(sq, x);

  // 将顺序表中pos往后的所有元素往后挪一位
  for (int i = sq->last; i >= pos; i--)
    sq->data[i + 1] = sq->data[i];
  sq->data[pos] = x;
  sq->last++;
  return true;
}
// 在顺序表sq中,定位元素x
int locate(sqlist *sq, int x)
{
  int pos;
  for (pos = 0; pos <= sq->last; pos++)
  {
    if (sq->data[pos] == x)
    {
      printf("data[%d]=%d\n", pos, x);
      return pos;
    }
  }
  return -1;
}
// 从顺序表中将元素x剔除
bool delete(sqlist *sq, int x)
{
  int pos;
  pos = locate(sq, x);
  // 元素x不存在
  if (pos == -1)
    return false;
  // 将pos后续的元素全部往前挪一位
  for (; pos <= sq->last; pos++)
    sq->data[pos] = sq->data[pos + 1];
  sq->last--;
  return true;
}
// 展示顺序表元素
void show_data(sqlist *sq)
{
  for (int i = 0; i <= sq->last; i++)
    printf("\tsq->data[%d]=%d\n", i, sq->data[i]);

  printf("=======================\n");
}
int main(int argc, char *argv[])
{
  // 初始化一条空的顺序表
  sqlist *sq = init_list(10);
  // 插入元素
  int num;
  while (1)
  {
    scanf("%d", &num);
    if (num > 0)
    {
      if (insert(sq, num))
        show_data(sq);
      else
        fprintf(stderr, "顺序表已满\n");
    }
    else if (num < 0)
    {
      if (delete (sq, -num))
        show_data(sq);
      else
        fprintf(stderr, "元素不存在\n");
    }
    else
    {
      fprintf(stderr, "BYE\n");
      break;
    }
  }
  return 0;
}

4.4 顺序表优缺点总结

顺序存储中,由于逻辑关系是用物理位置来表达的,因此从上述示例代码可以很清楚看到,
增删数据都非常困难,需要成片地移动数据。顺序表对数据节点的增删操作是很不友好的。
 
总结其特点如下:
 
  • 优点
     
    1. 不需要多余的信息来记录数据间的关系,存储密度高
     
    2. 所有数据顺序存储在一片连续的内存中,支持立即访问任意一个随机数据,比如上述顺序
    表中第i个节点是 s->data[i]
  • 缺点
     
    1. 插入、删除时需要保持数据的物理位置反映其逻辑关系,一般需要成片移动数据
     
    2. 当数据节点数量较多时,需要一整片较大的连续内存空间
     
    3. 当数据节点数量变化剧烈时,内存的释放和分配不灵活

5. 单链表

5.1 基本概念

  • 顺序表:顺序存储的线性表。
  • 链式表:链式存储的线性表,简称链表。
既然顺序存储中的数据因为挤在一起而导致需要成片移动,那很容易想到的解决方案是将数
据离散地存储在不同内存块中,然后在用来指针将它们串起来。这种朴素的思路所形成的链
式线性表,就是所谓的链表。
 
顺序表和链表在内存在的基本样态如下图所示:

                        

5.2 链表的分类

根据链表中各个节点之间使用指针的个数,以及首尾节点是否相连,可以将链表细分为如下
种类:
 
1. 单向链表
 
2. 单向循环链表
 
3. 双向循环链表
 
这些不同链表的操作都是差不多的,只是指针数目的异同。以最简单的单向链表为例,其基
本示意图如下所示:

上图中,所有的节点均保存一个指针,指向其逻辑上相邻的下一个节点(末尾节点指向
空)。另外注意到,整条链表用一个所谓的头指针 head 来指向,由 head 开始可以找到链表
中的任意一个节点。 head 通常被称为 头指针
 
链表的基本操作,一般包括:
 
        1. 节点设计
 
        2. 初始化空链表
 
        3. 增删节点
 
        4. 链表遍历
 
        5. 销毁链表
 
下面着重针对这几项常见操作,讲解单向链表的处理。

5.3 单链表节点设计

单向链表的节点非常简单,节点中除了要保存用户数据之外(这里以整型数据为例),只需
要增加一个指向本类节点的指针即可,如下所示:
typedef int DATA;
typedef struct Node
{
  DATA data;         // 存储数据---数据域
  struct Node *next; // 存储下一个节点的地址---指针域
} NODE;

                                

5.4 单链表初始化

首先,空链表有两种常见的形式。一种是带所谓的头结点的,一种是不带头结点的。所谓的
头结点是不存放有效数据的节点,仅仅用来方便操作,如下:

        ​​​​​​​        ​​​​​​​        

而不带头结点的空链表如下所示:

        ​​​​​​​        ​​​​​​​        

注意:
 
  • 头指针 head 是必须的,是链表的入口
  • 头节点是可选的,为了方便某些操作
由于头结点是不存放有效数据的,因此如果空链表中带有头结点,那么头指针 head 将永远不
变,这会给以后的链表操作带来些许便捷。
 
下面以带头结点的链表为例,展示单向链表的初始化的示例代码:
/*
@function: int slist_create(NODE** head,DATA data);
@berif: 创建单项链表
@argument: head: 指向头指针变量的地址,用来接收首节点地址
data: 存储在节点中的数据
@return : 成功返回 0
失败返回 -1
*/
int slist_create(NODE **head, DATA data)
{
  NODE *p = (NODE *)malloc(sizeof(NODE));
  if (!p)
  {
    return -1;
  }
  p->data = data;
  p->next = NULL;
  *head = p;
  return 0;
}

5.5 单链表增删节点

相对于顺序表需要整片移动数据,链表增删节点只需要修改几个相关指针的指向,动作非常
快速。
 
与顺序表类似,可以对一条链表中的任意节点进行增删操作,示例代码是:
/*
@function: int slist_addHead(NODE** head,DATA data);
@berif: 向链表头部插入一个节点数据
@argument: head: 指向头指针变量的地址,用来接收首节点地址
data: 存储在新节点中的数据
@return : 成功返回 0
失败返回 -1
*/
int slist_addHead(NODE **head, DATA data)
{
  NODE *p = (NODE *)malloc(sizeof(NODE));
  if (!p)
  {
    return -1;
  }
  p->data = data;
  p->next = *head;
  *head = p;
  return 0;
}
/*
@function: int slist_addTail(NODE** head,DATA data);
@berif: 向链表尾部插入一个节点数据
@argument: head: 指向头指针变量的地址,用来接收首节点地址
data: 存储在新节点中的数据
@return : 成功返回 0
失败返回 -1
*/
int slist_addTail(NODE **head, DATA data)
{
  NODE *pNew = (NODE *)malloc(sizeof(NODE));
  if (!pNew)
  {
    return -1;
  }
  pNew->data = data;
  pNew->next = NULL;
  NODE *p = *head, *q = NULL;
  if (!p)
  {
    *head = pNew;
    return 0;
  }
  while (p)
  {
    q = p;
    p = p->next;
  }
  q->next = pNew;
  return 0;
}
/*
@function: int slist_insert(NODE** head,DATA pos ,DATA data);
@berif: 向链表节点值为pos的位置插入一个节点数据data
@argument: head: 指向头指针变量的地址
pos: 插入节点位置的节点数据
data: 存储在新节点中的数据
@return : 成功返回 0
失败返回 -1
*/
int slist_insert(NODE **head, DATA pos, DATA data)
{
  NODE *pNew = (NODE *)malloc(sizeof(NODE));
  if (!pNew)
    return -1;
  pNew->data = data;
  pNew->next = NULL;
  NODE *p = *head, *q = NULL;
  if (!p)
  {
    *head = pNew;
    return 0;
  }
  if (memcmp(&(p->data), &pos, sizeof(DATA)) == 0)
  {
    pNew->next = *head;
    *head = pNew;
    return 0;
  }
  while (p)
  {
    if (memcmp(&(p->data), &pos, sizeof(DATA)) == 0)
    {
      pNew->next = p;
      q->next = pNew;
      return 0;
    }
    q = p;
    p = p->next;
  }
  q->next = pNew;
  return 0;
}
/*
@function: int slist_update(const NODE* head,DATA old,DATA newdata);
@berif: 更新链表数据old 为 newdata
@argument: head: 指向头指针变量
old: 待更新的节点数据
newdata: 更新后的节点数据
@return : 成功返回 0
失败返回 -1
*/
int slist_update(const NODE *head, DATA old, DATA newdata)
{
  NODE *p = NULL;
  if (!(p = slist_find(head, old)))
    return -1;
  p->data = newdata;
  return 0;
}
/*
@function: int slist_delete(NODE** head,DATA data);
@berif: 删除链表中节点值为data的节点
@argument: head: 指向头指针变量的地址
data: 删除节点中的数据
@return : 成功返回 0
失败返回 -1
*/
int slist_delete(NODE **head, DATA data)
{
  NODE *p = *head, *q = NULL;
  if (!p)
    return -1;
  if (memcmp(&(p->data), &data, sizeof(DATA)) == 0)
  {
    *head = p->next;
    free(p);
    return 0;
  }
  while (p)
  {
    if (memcmp(&(p->data), &data, sizeof(DATA)) == 0)
    {
      q->next = p->next;
      free(p);
      return 0;
    }
    q = p;
    p = p->next;
  }
  return -1;
}
注意:
 
删除链表的节点并不意味着释放其内存,而是将其剔除出链表

5.6 单链表的遍历

遍历的意思就是逐个访问每一个节点,对于线性表而言,由于路径唯一的选择就是从头走到
尾。因此相当而言比较简单。
 
下面是单向链表的遍历示例代码,假设遍历每个节点并将其整数数据输出:
/*
@function: NODE* slist_find(const NODE* head,DATA data);
@berif: 查找链表数据data
@argument: head: 指向头指针变量
data: 待查找的数据
@return : 成功返回节点的地址
失败返回NULL
*/
NODE *slist_find(const NODE *head, DATA data)
{
  const NODE *p = head;
  while (p)
  {
    if (memcmp(&(p->data), &data, sizeof(DATA)) == 0)
    {
      return (NODE *)p;
    }
    p = p->next;
  }
  return NULL;
}
/*
@function: void slist_showAll(const NODE* head);
@berif: 遍历链表数据
@argument: head: 指向头指针变量
@return : 无
*/
void slist_showAll(const NODE *head)
{
  const NODE *p = head;
  while (p)
  {
    printf("%d ", p->data);
    p = p->next;
  }
  printf("\n");
}

5.7 单链表的销毁

由于链表中的各个节点被离散地分布在各个随机的内存空间,因此销毁链表必须遍历每一个
节点,释放每一个节点。
注意:
 
销毁链表时,遍历节点要注意不能弄丢相邻节点的指针

示例代码如下:
/*
@function: void slist_destroy(NODE** head);
@berif: 回收链表
@argument: head: 指向头指针变量的地址
@return : 无
*/
void slist_destroy(NODE **head)
{
  NODE *p = *head, *q = NULL;
  while (p)
  {
    q = p;
    p = p->next;
    free(q);
  }
  *head = NULL;
}
注意:我们可以使用 valgrind 进行内存检测,举例:
valgrind ./..

5.8 完整代码

  • singleList.h
    #ifndef __SINGLELIST_H
    #define __SINGLELIST_H
    // 头文件
    #include <stdlib.h>
    #include <stdio.h>
    #include <string.h>
    typedef int DATA;
    typedef struct node
    {
      DATA data;
      struct node *next;
    } NODE;
    // 链表创建
    int slist_create(NODE **, DATA);
    // 链表数据添加-头插法
    int slist_addHead(NODE **head, DATA data);
    // 链表数据添加-尾插法
    int slist_addTail(NODE **head, DATA data);
    // 链表数据添加-中间插法
    int slist_insert(NODE **head, DATA pos, DATA data);
    // 链表数据查询
    NODE *slist_find(const NODE *head, DATA data);
    // 链表数据更新
    int slist_update(const NODE *head, DATA old, DATA newdata);
    // 链表数据遍历
    void slist_showAll(const NODE *head);
    // 链表数据删除
    int slist_delete(NODE **head, DATA data);
    // 链表回收
    void slist_destroy(NODE **head);
    
    #endif
  • singleList.c
    #include "singleList.h"
    /*
    @function: int slist_create(NODE** head,DATA data);
    @berif: 创建单项链表
    @argument: head: 指向头指针变量的地址,用来接收首节点地址
    data: 存储在节点中的数据
    @return : 成功返回 0
    失败返回 -1
    */
    int slist_create(NODE **head, DATA data)
    {
      NODE *p = (NODE *)malloc(sizeof(NODE));
      if (!p)
      {
        return -1;
      }
      p->data = data;
      p->next = NULL;
      *head = p;
      return 0;
    }
    /*
    @function: int slist_addHead(NODE** head,DATA data);
    @berif: 向链表头部插入一个节点数据
    @argument: head: 指向头指针变量的地址,用来接收首节点地址
    data: 存储在新节点中的数据
    @return : 成功返回 0
    失败返回 -1
    */
    int slist_addHead(NODE **head, DATA data)
    {
      NODE *p = (NODE *)malloc(sizeof(NODE));
      if (!p)
      {
        return -1;
      }
      p->data = data;
      p->next = *head;
      *head = p;
      return 0;
    }
    /*
    @function: int slist_addTail(NODE** head,DATA data);
    @berif: 向链表尾部插入一个节点数据
    @argument: head: 指向头指针变量的地址,用来接收首节点地址
    data: 存储在新节点中的数据
    @return : 成功返回 0
    失败返回 -1
    */
    int slist_addTail(NODE **head, DATA data)
    {
      NODE *pNew = (NODE *)malloc(sizeof(NODE));
      if (!pNew)
      {
        return -1;
      }
      pNew->data = data;
      pNew->next = NULL;
      NODE *p = *head, *q = NULL;
      if (!p)
      {
        *head = pNew;
        return 0;
      }
      while (p)
      {
        q = p;
        p = p->next;
      }
      q->next = pNew;
      return 0;
    }
    /*
    @function: int slist_insert(NODE** head,DATA pos ,DATA data);
    @berif: 向链表节点值为pos的位置插入一个节点数据data
    @argument: head: 指向头指针变量的地址
    pos: 插入节点位置的节点数据
    data: 存储在新节点中的数据
    @return : 成功返回 0
    失败返回 -1
    */
    
    int slist_insert(NODE **head, DATA pos, DATA data)
    {
      NODE *pNew = (NODE *)malloc(sizeof(NODE));
      if (!pNew)
        return -1;
      pNew->data = data;
      pNew->next = NULL;
      NODE *p = *head, *q = NULL;
      if (!p)
      {
        *head = pNew;
        return 0;
      }
      if (memcmp(&(p->data), &pos, sizeof(DATA)) == 0)
      {
        pNew->next = *head;
        *head = pNew;
        return 0;
      }
      while (p)
      {
        if (memcmp(&(p->data), &pos, sizeof(DATA)) == 0)
        {
          pNew->next = p;
          q->next = pNew;
          return 0;
        }
        q = p;
        p = p->next;
      }
      q->next = pNew;
      return 0;
    }
    /*
    @function: NODE* slist_find(const NODE* head,DATA data);
    @berif: 查找链表数据data
    @argument: head: 指向头指针变量
    data: 待查找的数据
    @return : 成功返回节点的地址
    失败返回NULL
    */
    NODE *slist_find(const NODE *head, DATA data)
    {
      const NODE *p = head;
      while (p)
      {
        if (memcmp(&(p->data), &data, sizeof(DATA)) == 0)
        {
          return (NODE *)p;
        }
        p = p->next;
      }
      return NULL;
    }
    /*
    @function: int slist_update(const NODE* head,DATA old,DATA newdata);
    @berif: 更新链表数据old 为 newdata
    @argument: head: 指向头指针变量
    old: 待更新的节点数据
    newdata: 更新后的节点数据
    @return : 成功返回 0
    失败返回 -1
    */
    int slist_update(const NODE *head, DATA old, DATA newdata)
    {
      NODE *p = NULL;
      if (!(p = slist_find(head, old)))
        return -1;
      p->data = newdata;
      return 0;
    }
    /*
    @function: void slist_showAll(const NODE* head);
    @berif: 遍历链表数据
    @argument: head: 指向头指针变量
    @return : 无
    */
    void slist_showAll(const NODE *head)
    {
      const NODE *p = head;
      while (p)
      {
        printf("%d ", p->data);
        p = p->next;
      }
      printf("\n");
    }
    
    /*
    @function: int slist_delete(NODE** head,DATA data);
    @berif: 删除链表中节点值为data的节点
    @argument: head: 指向头指针变量的地址
    data: 删除节点中的数据
    @return : 成功返回 0
    失败返回 -1
    */
    int slist_delete(NODE **head, DATA data)
    {
      NODE *p = *head, *q = NULL;
      if (!p)
        return -1;
      if (memcmp(&(p->data), &data, sizeof(DATA)) == 0)
      {
        *head = p->next;
        free(p);
        return 0;
      }
      while (p)
      {
        if (memcmp(&(p->data), &data, sizeof(DATA)) == 0)
        {
          q->next = p->next;
          free(p);
          return 0;
        }
        q = p;
        p = p->next;
      }
      return -1;
    }
    /*
    @function: void slist_destroy(NODE** head);
    @berif: 回收链表
    @argument: head: 指向头指针变量的地址
    @return : 无
    */
    void slist_destroy(NODE **head)
    {
      NODE *p = *head, *q = NULL;
      while (p)
      {
        q = p;
        p = p->next;
        free(q);
      }
      *head = NULL;
    }
  • main.c
    #include "singleList.h"
    int main(void)
    {
      NODE *head = NULL;
      if (slist_create(&head, 888) < 0)
      {
        puts("create failed");
        return -1;
      }
      slist_addTail(&head, 999);
      slist_addTail(&head, 222);
      slist_addTail(&head, 666);
      slist_addTail(&head, 777);
      slist_addHead(&head, 555);
      slist_insert(&head, 888, 1024);
      slist_showAll(head);
      DATA data;
      while (0)
      {
    #ifdef DELETE
        printf("请输入要删除的数据:");
        scanf("%d", &data);
        if (data == -1)
          break;
        if (slist_delete(&head, data) < 0)
        {
          puts("删除失败,请重试");
          continue;
        }
        slist_showAll(head);
    #else
        NODE *pFind = NULL;
        DATA newdata = 512;
        printf("请输入要查找的数据:");
        scanf("%d", &data);
        if (data == -1)
          break;
        // if(!(pFind = slist_find(head,data)))
        if (slist_update(head, data, newdata) == -1)
        {
          puts("查找的数据不存在,请重试");
          continue;
        }
        // printf("查找数据:%d 内存地址:%p\n",pFind -> data, &(pFind -> data));
        slist_showAll(head);
    #endif
      }
      slist_destroy(&head);
      puts("====销毁后=====");
      slist_showAll(head);
      return 0;
    }

「课堂练习2」

创建一个单向表,并从键盘接收数字输入,将输入的正整数按从小到大的顺序插入链表,并
在输入负整数的时候将其绝对值数据删除。每次输入后,将链表的内容打印到屏幕上。

                                                

解析:
此题考查单链表的基本思路,体会链式存储中对于插入和删除的便利性。


参考代码

#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>

typedef struct node
{
  int num;
  struct node *next;
} listnode, *linklist;
bool init_list(linklist *phead)
{
  *phead = (linklist)malloc(sizeof(listnode));
  if (*phead == NULL)
    return false;
  (*phead)->next = NULL;
  return true;
}
bool is_empty(linklist head)
{
  return (head->next == NULL);
}
bool insert(linklist head, int x)
{
  linklist new = (linklist)malloc(sizeof(listnode));
  if (new == NULL)
  {
    perror("malloc failed");
    return false;
  }
  new->num = x;
  /********************************
  the single linklist IS empty
  *********************************/
  if (is_empty(head))
  {
    head->next = new;
    new->next = NULL;
  }
  /*********************************
  the single linklist is NOT empty
  **********************************/
  else
  {
    linklist p, q;
    p = head;
    q = p->next;
    while (q != NULL)
    {
      if (q->num < x)
      {
        q = q->next;
        p = p->next;
        continue;
      }
      break;
    }
    new->next = q;
    p->next = new;
  }
  return true;
}
bool delete(linklist head, int x)
{
  if (is_empty(head))
    return false;
  linklist p, q;
  p = head;
  q = p->next;
  while (q != NULL)
  {
    if (q->num != x)
    {
      p = p->next;
      q = q->next;
      continue;
    }
    p->next = q->next;
    free(q);
    return true;
  }
  return false;
}
void show(linklist head)
{
  if (is_empty(head))
    return;
  linklist p = head->next;
  while (p != NULL && p->next != NULL)
  {
    printf("%d-->", p->num);
    p = p->next;
  }
  printf("%d\n", p->num);
}
int main(void)
{
  linklist head;
  init_list(&head);
  int tmp, ret;
  while (1)
  {
    ret = scanf("%d", &tmp);
    if (ret != 1)
      exit(0);
    if (tmp >= 0)
    {
      if (!insert(head, tmp))
        fprintf(stderr, "insertion falied!\n");
      else
        show(head);
    }
    else
    {
      if (!delete (head, -tmp))
        fprintf(stderr, "%d does NOT exist!\n", -tmp);
      else
        show(head);
    }
  }
  fprintf(stderr, "Bye-Bye!\n");
  return 0;
}

5.9 链表优缺点

链式存储中,所有节点的存储位置是随机的,他们之间的逻辑关系用指针来确定,跟物理存
储位置无关,因此从上述示例代码可以很清楚看到,增删数据都非常迅速,不需要移动任何
数据。另外,又由于位置与逻辑关系无关,因此也无法直接访问某一个指定的节点,只能从
头到尾按遍历的方式一个个找到想要的节点。简单讲,链式存储的优缺点跟顺序存储几乎是相对的。

总结其特点如下:
 
  • 优点
     
    1. 插入、删除时只需要调整几个指针,无需移动任何数据
     
    2. 当数据节点数量较多时,无需一整片较大的连续内存空间,可以灵活利用离散的内存
     
    3. 当数据节点数量变化剧烈时,内存的释放和分配灵活,速度快
     
  • 缺点
     
    1. 在节点中,需要多余的指针来记录节点之间的关联。
     
    2. 所有数据都是随机存储的,不支持立即访问任意一个随机数据。

5.10 循环链表【扩展】

所谓的循环,指得是将链表末尾节点循环地指向链表表头。比如,单向链表变成循环链表的
示意图如下所示:
循环链表的操作跟普通链表操作基本上是一致的,只要针对循环特性稍作修改即可。比如:
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <stdbool.h>
typedef struct node
{
  // 以整型数据为例
  int data;
  // 指向相邻的下一个节点的指针
  struct node *next;
} node;
// 初始化一个空的带头节点的循环连表
node *initList()
{
  node *head = malloc(sizeof(node));
  if (head != NULL)
  {
    head->next = head;
  }
  return head;
}
// 创建一个新节点
node *newNode(int data)
{
  // 分配一个新节点的内存
  node *new = malloc(sizeof(node));
  if (new != NULL)
  {
    new->data = data;
    new->next = new;
  }
  return new;
}
// 插入链表的头部
void insertHead(node *head, node *new)
{
  // a.
  new->next = head->next;
  // b.
  head->next = new;
}
// 判断链表是否为空
bool isEmpty(node *head)
{
  return head->next == head;
}
// 遍历链表
void show(node *head)
{
  if (isEmpty(head))
    return;
  for (node *p = head->next; p != head; p = p->next) // 这里不能是p++,不是有序的
  {
    printf("%d\t", p->data);
  }
  printf("\n");
}
// 将链表首部节点剔除
node *removeNode(node *head, int data)
{
  node *tmp, *p;
  for (p = head, tmp = p->next; tmp != head; p = p->next, tmp = tmp->next)
  {
    // 找到要删除的节点的上一个节点指针
    if (tmp->data == data)
    {
      p->next = tmp->next;
      tmp->next = tmp; // 解除引用
      return tmp;
    }
  }
  return NULL;
}
// 销毁链表
node *destroy(node *head)
{
  while (head->next != head)
  {
    node *tmp = head->next;
    head->next = tmp->next;
    free(tmp);
  }
  return NULL;
}
int main()
{
  // 初始化一个空链表
  node *head = initList();
  // 插入一些数据都链表的头部
  for (int i = 1; i <= 5; i++)
  {
    // 1. 创建新节点
    node *new = newNode(i);
    // 2. 将新节点置入链表
    insertHead(head, new);
  }
  // 遍历链表,输出各元素
  show(head);
  // 输入您要删除的节点
  int n;
  printf("输入您要删除的节点:\n");
  while (true)
  {
    scanf("%d", &n);
    if (n == 0)
    {
      break; // 测试销毁,先退出循环
    }
    node *p = removeNode(head, n);
    if (p == NULL)
    {
      printf("没有您要删除的节点!\n");
      continue;
    }
    free(p);
    show(head);
  }
  // 销毁链表,销毁之后返回NULL,此时这个链表就不能在用了
  head = destroy(head);
}

面试题:

对于一个具有 n 和节点的单向链表 (n > 100) , 只通过一次遍历找到倒数第 50
个节点
提示: 借助于 2个指针,一个在前,一个在后。
 
思路:
 
        先让前一个指针遍历到第50个节点的位置,然后后一个指针,再跟随前一个指针一
起向后移动,当前一个指针遍历完所有节点,后一个指针就是指向了倒数第50个节点的
位置。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值