第1章 顺序表和单链表
1. 基本概念
数据结构是一门研究如何有效组织数据,并提高数据处理效率的学科。通过研究各种数据内
部的逻辑关系,使用某种特定的存储形式,并在此基础上对数据实施各种操作,这些工作被
称为称为广义上的算法。
- 逻辑结构
- 指数据之间的内在关系。通常有集合、线性表、树、图等常见的逻辑结构。
-
逻辑结构是数据之间本身的属性,跟我们怎么处理它们无关。
线性关系:各个元素之间是一种一对一的关系,比如图书馆中的书架的书,除了首尾两本书
之外,其余的任意一本书的编号假设是
N
,都有且仅有一个直接前驱节点
N-1
,有且仅有一个
直接后继节点
N+1
。这种关系就是典型的线性逻辑。
非线性关系:与上述线性关系的表述不同,如果各个元素之间不是严格一对一的关系,则被
称为非线性关系,比如家族中的各个成员、不同城市间的交通道路等,对于它们中间的某个
元素,都可能有不止一个元素与之关联。这种关系是典型的非线性逻辑。
- 存储形式
- 数据的存储方式。比如顺序存储、链式存储等。
- 不同的存储形式对最终数据的处理效率通常有很大的影响。
- 逻辑结构与存储形式并无必然联系。
2. 算法分析【了解】
算法分析是指算法在正确的情况下,对其优劣的分析。一个好的算法通常是指:
1. 算法对应的程序所耗时间少
2. 算法对应的程序所耗存储空间少
3. 算法结构性好、易读、易移植和调试
数据结构与算法的本质任务,是提高程序的时间空间效率,简单讲就是让程序的执行速度越
快越好,所需内存空间越少越好。虽然在很多情况下,程序的时空特性是相互制约的,就像
鱼和熊掌不可兼得,但我们可以根据程序实际解决问题的侧重点,去平衡时间和空间的对性
能的消耗。
2.1 时间复杂度
一般而言,时间复杂度并不考察一段代码运行所需要的绝对时间,因为不同的计算机的硬件
参数不同,考察绝对时间没有意义。时间复杂度一般指的是代码的语句执行总次数,称为语
句频度。比如:
void counting(int n)
{
for (int i = 0; i < n; i++)
{
printf("本行语句将会出现n次\n");
for (int j = 0; j < n; j++)
{
printf("本行语句将会出现n*n次\n");
}
}
}
在上述代码中,程序执行的语句频度理论是:
但一般情况下,我们只关心多项式的最高次幂,于是上述代码的时间复杂度我们表示为:
这意味着,该程序算法所需要的时间,与传进来的参数n的平方成正比。
不同算法的时间复杂度相差很大,如下图所示,随着所处理的问题规模的增大,不同时间复
杂度的程序所需要的时间有天壤之别。
2.2 空间复杂度
空间复杂度的概念更简单一点,就是一段程序运行时所需的内存字节量。
2.3 时空复杂度互换
一段程序的性能指标,既要运行快速,又要节省内存,而通常这两者又是相互制约的,很难
兼得。因此在实际解决问题时,会根据需要侧重一方,牺牲另一方。
3. 线性表
3.1 概念
对于一组拥有
n
个数据元素的线性表,其严格数学定义是:其中任何一个数据元素 ,有且仅
有一个直接前驱,有且仅有一个直接后继。首元素无直接前驱,尾元素无直接后继。
满足这种数学关系的一组数据,当中的数据是一个挨着一个的,常被称为一对一关系。反之,如果数据之间的关系不是一对一的,就是非线性的。
3.2 举例
生活中的线性表例子非常多,比如一个班级中的以学号编排的学生,一座图书馆中的以序号
编排的图书、一条正常排队等候的队列、一摞从上到下堆叠的餐盘,这些都是线性表。他们
的特点都是:除了首尾两个元素,其余任何一个元素前后都对应相邻的另一个元素。
注意:
线性表是一种数据内部的逻辑关系,与存储形式无关
线性表既可以采用连续的顺序存储,也可以采用离散的链式存储
4. 顺序表
4.1 基本概念
- 顺序表:顺序存储的线性表。
- 链式表:链式存储的线性表,简称链表。
顺序存储就是将数据存储到一片连续的内存中,在
C
语言环境下,可以是具名的栈数组,或者
是匿名的堆数组。
存储方式不仅仅只是提供数据的存储空间,而是必须要能体现数据之间的逻辑关系。当采用
顺序存储的方式来存放数据时,唯一能用来表达数据间本身的逻辑关系的就是存储位置。比
如队列中的两个人,小明和小花,如果小明在逻辑上排在相邻的小花的前面,那么在存储位
置上也必须把小明存放在相邻的小花的前面。
4.2 基本操作
- 顺序表设计
一般而言,为了方便操作顺序表,需要一个专门管理顺序表的 ” 管理结构体 “ ,管理结构体中一般会包含:
1. 顺序表总容量
2. 顺序表当前最末元素下标位置
3. 顺序表指针
下面是管理结构体示例代码:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef struct
{
int capacity; // 顺序表容量
int last; // 最末元素下标
int *data; // 顺序表,以整型数据为例
} sequenceList;
- 初始化
所谓初始化就是建立一个不包含任何元素的顺序表,设置好管理结构体中的表的总容量、末元素下标,申请好顺序表内存空间等系列准备工作。
下面是初始化顺序表的示例代码:
sequenceList *init_list(int cap)
{
sequenceList *list = malloc(sizeof(sequenceList));
if (list != NULL)
{
list->data = malloc(sizeof(int) * cap);
if (list->data == NULL)
{
free(list);
return NULL;
}
list->capacity = cap;
list->last = -1;
}
return list;
}
测试
int main()
{
sequenceList *list = init_list(10);
if (list == NULL)
{
perror("初始化顺序表失败!");
exit(0);
}
else
{
printf("初始化顺序表成功!\n");
}
}
- 增删节点
在顺序表中增加一个数据,可以有多种方式,比如在原数组的末尾增加,或者在原数组的头部增加,或者在数组中间任意一个位置增加。根据实际需要来定。
下面以在顺序表头部增删数据为例,示例代码如下:
// 判定顺序表是否为空
bool isEmpty(sequenceList *s)
{
return s->last == -1;
}
// 判定顺序表是否已满
bool isFull(sequenceList *s)
{
return s->last == s->capacity - 1;
}
// 在顺序表表头插入一个新数据
bool insert(sequenceList *s, int data)
{
if (isFull(s))
return false;
// 将原有数据全部往后挪一位
for (int i = s->last; i >= 0; i--)
s->data[i + 1] = s->data[i];
// 将新数据置入表头
s->data[0] = data;
s->last++;
return true;
}
// 将顺序表表头的数据删除掉
bool removeNode(sequenceList *s)
{
if (isEmpty(s))
return false;
// 将所有数据全部往前挪一位
for (int i = 0; i < s->last; i++)
s->data[i] = s->data[i + 1];
s->last--;
return true;
}
- 销毁顺序表
一个顺序表最后不再需要,应当要释放其所占用的内存空间,这被称为顺序表的销毁。
下面是销毁操作的示例代码:
void destroy(sequenceList *s)
{
if (s == NULL)
return;
free(s->data);
free(s);
}
4.3 完整代码
- seqlist.h
#ifndef __SEQLIST_H #define __SEQLIST_H #include <stdio.h> #include <stdlib.h> #include <string.h> #include <stdbool.h> typedef struct { int capacity; // 顺序表容量 int last; // 最末元素下标 int *data; // 顺序表,以整型数据为例 } sequenceList; // 初始化顺序表 sequenceList *init_list(int cap); // 判断顺序表是否写满 bool isFull(sequenceList *list); // 向顺序表插入数据 bool insert(sequenceList *s, int data); // 非空校验 bool isEmpty(sequenceList *list); // 遍历顺序表 void show(sequenceList *list); // 删除顺序表数据 bool removeNode(sequenceList *list, int data); // 释放内存 void destroy(sequenceList *s); #endif
- seqlist.c
#include "seqlist.h" sequenceList *init_list(int cap) { sequenceList *list = malloc(sizeof(sequenceList)); if (list != NULL) { list->data = malloc(sizeof(int) * cap); if (list->data == NULL) { free(list); return NULL; } list->capacity = cap; list->last = -1; } return list; } bool isFull(sequenceList *list) { return list->last == list->capacity - 1; } // 在顺序表表头插入一个新数据 bool insert(sequenceList *s, int data) { if (isFull(s)) return false; // 将原有数据全部往后挪一位 for (int i = s->last; i >= 0; i--) s->data[i + 1] = s->data[i]; // 将新数据置入表头 s->data[0] = data; s->last++; return true; } // 判断是否为空 bool isEmpty(sequenceList *list) { return list->last == -1; } // 查看当前顺序表的元素 void show(sequenceList *list) { if (isEmpty(list)) { return; } for (int i = 0; i <= list->last; i++) printf("%d\t", list->data[i]); printf("\n"); } // 将顺序表中指定的某个元素删除掉 bool removeNode(sequenceList *list, int data) { if (isEmpty(list)) return false; // 找到要删除的节点的位置 int i, pos = -1; for (i = 0; i <= list->last; i++) { if (list->data[i == data]) { pos = i; break; } } // 找不到要删除的元素 if (i > list->last) { return false; } // 将所有数据全部往前挪一位 for (int i = 0; i < list->last; i++) list->data[i] = list->data[i + 1]; list->last--; return true; } // 释放内存 void destroy(sequenceList *s) { if (s == NULL) return; free(s->data); free(s); } int main() { // 创建顺序表 sequenceList *list = init_list(10); if (list == NULL) { perror("初始化顺序表失败!"); exit(0); } else { printf("初始化顺序表成功!\n"); } // 测试向顺序表插入/删除信息 int n; while (true) { scanf("%d", &n); if (n > 0) { // 插入 if (!insert(list, n)) { printf("容量已满,插入失败!\n"); continue; } } else if (n < 0) { // 删除 if (!removeNode(list, -n)) { printf("查无此数,删除失败!\n"); continue; } } // 遍历 show(list); } // 释放 destroy(list); }
「课堂练习1」
创建一个顺序表,并从键盘接收数字输入,将输入的正整数按从小到大的顺序插入顺序表,
并在输入负整数的时候将其绝对值数据删除。每次输入后,将顺序表的内容打印到屏幕上。
解析:
此题考查顺序表的基本思路,先要设计好顺序表的逻辑表达,再通过对顺序表的插入和删除
操作,体会顺序存储中对于插入和删除的不便性。
参考代码
:
#include <stdio.h>
#include <stdbool.h>
#include <stdlib.h>
typedef struct
{
int total_size; // 顺序表总容量
int last; // 顺序表最末元素的下标
int *data; // 顺序表的存储空间
} sqlist;
// 初始化一个空的顺序表
sqlist *init_list(int total_size)
{
sqlist *sq = (sqlist *)malloc(sizeof(sqlist));
if (sq != NULL)
{
sq->total_size = total_size;
sq->last = -1; // 用-1表征当前没有元素
sq->data = (int *)malloc(sizeof(int) * total_size);
if (sq->data == NULL)
{
free(sq);
}
}
return sq;
}
// 在递增的顺序表中找到x应插入的合适位置
int get_pos(sqlist *sq, int x)
{
int pos = 0;
while ((pos <= sq->last) && (sq->data[pos] < x))
pos++;
// 当链表为空(即sq->last为-1时),返回0
return pos;
}
// 判断顺序表是否已满
bool is_full(sqlist *sq)
{
return sq->last >= sq->total_size - 1;
}
// 将元素x插入顺序表sq中
bool insert(sqlist *sq, int x)
{
if (is_full(sq))
return false;
// 在顺序表中得到即将要插入的元素x的合适的位置
int pos = get_pos(sq, x);
// 将顺序表中pos往后的所有元素往后挪一位
for (int i = sq->last; i >= pos; i--)
sq->data[i + 1] = sq->data[i];
sq->data[pos] = x;
sq->last++;
return true;
}
// 在顺序表sq中,定位元素x
int locate(sqlist *sq, int x)
{
int pos;
for (pos = 0; pos <= sq->last; pos++)
{
if (sq->data[pos] == x)
{
printf("data[%d]=%d\n", pos, x);
return pos;
}
}
return -1;
}
// 从顺序表中将元素x剔除
bool delete(sqlist *sq, int x)
{
int pos;
pos = locate(sq, x);
// 元素x不存在
if (pos == -1)
return false;
// 将pos后续的元素全部往前挪一位
for (; pos <= sq->last; pos++)
sq->data[pos] = sq->data[pos + 1];
sq->last--;
return true;
}
// 展示顺序表元素
void show_data(sqlist *sq)
{
for (int i = 0; i <= sq->last; i++)
printf("\tsq->data[%d]=%d\n", i, sq->data[i]);
printf("=======================\n");
}
int main(int argc, char *argv[])
{
// 初始化一条空的顺序表
sqlist *sq = init_list(10);
// 插入元素
int num;
while (1)
{
scanf("%d", &num);
if (num > 0)
{
if (insert(sq, num))
show_data(sq);
else
fprintf(stderr, "顺序表已满\n");
}
else if (num < 0)
{
if (delete (sq, -num))
show_data(sq);
else
fprintf(stderr, "元素不存在\n");
}
else
{
fprintf(stderr, "BYE\n");
break;
}
}
return 0;
}
4.4 顺序表优缺点总结
顺序存储中,由于逻辑关系是用物理位置来表达的,因此从上述示例代码可以很清楚看到,
增删数据都非常困难,需要成片地移动数据。顺序表对数据节点的增删操作是很不友好的。
总结其特点如下:
- 优点
1. 不需要多余的信息来记录数据间的关系,存储密度高
2. 所有数据顺序存储在一片连续的内存中,支持立即访问任意一个随机数据,比如上述顺序表中第i个节点是 s->data[i] - 缺点
1. 插入、删除时需要保持数据的物理位置反映其逻辑关系,一般需要成片移动数据
2. 当数据节点数量较多时,需要一整片较大的连续内存空间
3. 当数据节点数量变化剧烈时,内存的释放和分配不灵活
5. 单链表
5.1 基本概念
- 顺序表:顺序存储的线性表。
- 链式表:链式存储的线性表,简称链表。
既然顺序存储中的数据因为挤在一起而导致需要成片移动,那很容易想到的解决方案是将数
据离散地存储在不同内存块中,然后在用来指针将它们串起来。这种朴素的思路所形成的链
式线性表,就是所谓的链表。
顺序表和链表在内存在的基本样态如下图所示:
5.2 链表的分类
根据链表中各个节点之间使用指针的个数,以及首尾节点是否相连,可以将链表细分为如下
种类:
1.
单向链表
2.
单向循环链表
3.
双向循环链表
这些不同链表的操作都是差不多的,只是指针数目的异同。以最简单的单向链表为例,其基
本示意图如下所示:
上图中,所有的节点均保存一个指针,指向其逻辑上相邻的下一个节点(末尾节点指向
空)。另外注意到,整条链表用一个所谓的头指针
head
来指向,由
head
开始可以找到链表
中的任意一个节点。
head
通常被称为
头指针
。
链表的基本操作,一般包括:
1. 节点设计
2. 初始化空链表
3. 增删节点
4. 链表遍历
5. 销毁链表
下面着重针对这几项常见操作,讲解单向链表的处理。
5.3 单链表节点设计
单向链表的节点非常简单,节点中除了要保存用户数据之外(这里以整型数据为例),只需
要增加一个指向本类节点的指针即可,如下所示:
typedef int DATA;
typedef struct Node
{
DATA data; // 存储数据---数据域
struct Node *next; // 存储下一个节点的地址---指针域
} NODE;
5.4 单链表初始化
首先,空链表有两种常见的形式。一种是带所谓的头结点的,一种是不带头结点的。所谓的
头结点是不存放有效数据的节点,仅仅用来方便操作,如下:
而不带头结点的空链表如下所示:
注意:
- 头指针 head 是必须的,是链表的入口
- 头节点是可选的,为了方便某些操作
由于头结点是不存放有效数据的,因此如果空链表中带有头结点,那么头指针
head
将永远不
变,这会给以后的链表操作带来些许便捷。
下面以带头结点的链表为例,展示单向链表的初始化的示例代码:
/*
@function: int slist_create(NODE** head,DATA data);
@berif: 创建单项链表
@argument: head: 指向头指针变量的地址,用来接收首节点地址
data: 存储在节点中的数据
@return : 成功返回 0
失败返回 -1
*/
int slist_create(NODE **head, DATA data)
{
NODE *p = (NODE *)malloc(sizeof(NODE));
if (!p)
{
return -1;
}
p->data = data;
p->next = NULL;
*head = p;
return 0;
}
5.5 单链表增删节点
相对于顺序表需要整片移动数据,链表增删节点只需要修改几个相关指针的指向,动作非常
快速。
与顺序表类似,可以对一条链表中的任意节点进行增删操作,示例代码是:
/*
@function: int slist_addHead(NODE** head,DATA data);
@berif: 向链表头部插入一个节点数据
@argument: head: 指向头指针变量的地址,用来接收首节点地址
data: 存储在新节点中的数据
@return : 成功返回 0
失败返回 -1
*/
int slist_addHead(NODE **head, DATA data)
{
NODE *p = (NODE *)malloc(sizeof(NODE));
if (!p)
{
return -1;
}
p->data = data;
p->next = *head;
*head = p;
return 0;
}
/*
@function: int slist_addTail(NODE** head,DATA data);
@berif: 向链表尾部插入一个节点数据
@argument: head: 指向头指针变量的地址,用来接收首节点地址
data: 存储在新节点中的数据
@return : 成功返回 0
失败返回 -1
*/
int slist_addTail(NODE **head, DATA data)
{
NODE *pNew = (NODE *)malloc(sizeof(NODE));
if (!pNew)
{
return -1;
}
pNew->data = data;
pNew->next = NULL;
NODE *p = *head, *q = NULL;
if (!p)
{
*head = pNew;
return 0;
}
while (p)
{
q = p;
p = p->next;
}
q->next = pNew;
return 0;
}
/*
@function: int slist_insert(NODE** head,DATA pos ,DATA data);
@berif: 向链表节点值为pos的位置插入一个节点数据data
@argument: head: 指向头指针变量的地址
pos: 插入节点位置的节点数据
data: 存储在新节点中的数据
@return : 成功返回 0
失败返回 -1
*/
int slist_insert(NODE **head, DATA pos, DATA data)
{
NODE *pNew = (NODE *)malloc(sizeof(NODE));
if (!pNew)
return -1;
pNew->data = data;
pNew->next = NULL;
NODE *p = *head, *q = NULL;
if (!p)
{
*head = pNew;
return 0;
}
if (memcmp(&(p->data), &pos, sizeof(DATA)) == 0)
{
pNew->next = *head;
*head = pNew;
return 0;
}
while (p)
{
if (memcmp(&(p->data), &pos, sizeof(DATA)) == 0)
{
pNew->next = p;
q->next = pNew;
return 0;
}
q = p;
p = p->next;
}
q->next = pNew;
return 0;
}
/*
@function: int slist_update(const NODE* head,DATA old,DATA newdata);
@berif: 更新链表数据old 为 newdata
@argument: head: 指向头指针变量
old: 待更新的节点数据
newdata: 更新后的节点数据
@return : 成功返回 0
失败返回 -1
*/
int slist_update(const NODE *head, DATA old, DATA newdata)
{
NODE *p = NULL;
if (!(p = slist_find(head, old)))
return -1;
p->data = newdata;
return 0;
}
/*
@function: int slist_delete(NODE** head,DATA data);
@berif: 删除链表中节点值为data的节点
@argument: head: 指向头指针变量的地址
data: 删除节点中的数据
@return : 成功返回 0
失败返回 -1
*/
int slist_delete(NODE **head, DATA data)
{
NODE *p = *head, *q = NULL;
if (!p)
return -1;
if (memcmp(&(p->data), &data, sizeof(DATA)) == 0)
{
*head = p->next;
free(p);
return 0;
}
while (p)
{
if (memcmp(&(p->data), &data, sizeof(DATA)) == 0)
{
q->next = p->next;
free(p);
return 0;
}
q = p;
p = p->next;
}
return -1;
}
注意:
删除链表的节点并不意味着释放其内存,而是将其剔除出链表
5.6 单链表的遍历
遍历的意思就是逐个访问每一个节点,对于线性表而言,由于路径唯一的选择就是从头走到
尾。因此相当而言比较简单。
下面是单向链表的遍历示例代码,假设遍历每个节点并将其整数数据输出:
/*
@function: NODE* slist_find(const NODE* head,DATA data);
@berif: 查找链表数据data
@argument: head: 指向头指针变量
data: 待查找的数据
@return : 成功返回节点的地址
失败返回NULL
*/
NODE *slist_find(const NODE *head, DATA data)
{
const NODE *p = head;
while (p)
{
if (memcmp(&(p->data), &data, sizeof(DATA)) == 0)
{
return (NODE *)p;
}
p = p->next;
}
return NULL;
}
/*
@function: void slist_showAll(const NODE* head);
@berif: 遍历链表数据
@argument: head: 指向头指针变量
@return : 无
*/
void slist_showAll(const NODE *head)
{
const NODE *p = head;
while (p)
{
printf("%d ", p->data);
p = p->next;
}
printf("\n");
}
5.7 单链表的销毁
由于链表中的各个节点被离散地分布在各个随机的内存空间,因此销毁链表必须遍历每一个
节点,释放每一个节点。
注意:
销毁链表时,遍历节点要注意不能弄丢相邻节点的指针
示例代码如下:
/*
@function: void slist_destroy(NODE** head);
@berif: 回收链表
@argument: head: 指向头指针变量的地址
@return : 无
*/
void slist_destroy(NODE **head)
{
NODE *p = *head, *q = NULL;
while (p)
{
q = p;
p = p->next;
free(q);
}
*head = NULL;
}
注意:我们可以使用
valgrind
进行内存检测,举例:
valgrind ./..
5.8 完整代码
-
singleList.h
#ifndef __SINGLELIST_H #define __SINGLELIST_H // 头文件 #include <stdlib.h> #include <stdio.h> #include <string.h> typedef int DATA; typedef struct node { DATA data; struct node *next; } NODE; // 链表创建 int slist_create(NODE **, DATA); // 链表数据添加-头插法 int slist_addHead(NODE **head, DATA data); // 链表数据添加-尾插法 int slist_addTail(NODE **head, DATA data); // 链表数据添加-中间插法 int slist_insert(NODE **head, DATA pos, DATA data); // 链表数据查询 NODE *slist_find(const NODE *head, DATA data); // 链表数据更新 int slist_update(const NODE *head, DATA old, DATA newdata); // 链表数据遍历 void slist_showAll(const NODE *head); // 链表数据删除 int slist_delete(NODE **head, DATA data); // 链表回收 void slist_destroy(NODE **head); #endif
- singleList.c
#include "singleList.h" /* @function: int slist_create(NODE** head,DATA data); @berif: 创建单项链表 @argument: head: 指向头指针变量的地址,用来接收首节点地址 data: 存储在节点中的数据 @return : 成功返回 0 失败返回 -1 */ int slist_create(NODE **head, DATA data) { NODE *p = (NODE *)malloc(sizeof(NODE)); if (!p) { return -1; } p->data = data; p->next = NULL; *head = p; return 0; } /* @function: int slist_addHead(NODE** head,DATA data); @berif: 向链表头部插入一个节点数据 @argument: head: 指向头指针变量的地址,用来接收首节点地址 data: 存储在新节点中的数据 @return : 成功返回 0 失败返回 -1 */ int slist_addHead(NODE **head, DATA data) { NODE *p = (NODE *)malloc(sizeof(NODE)); if (!p) { return -1; } p->data = data; p->next = *head; *head = p; return 0; } /* @function: int slist_addTail(NODE** head,DATA data); @berif: 向链表尾部插入一个节点数据 @argument: head: 指向头指针变量的地址,用来接收首节点地址 data: 存储在新节点中的数据 @return : 成功返回 0 失败返回 -1 */ int slist_addTail(NODE **head, DATA data) { NODE *pNew = (NODE *)malloc(sizeof(NODE)); if (!pNew) { return -1; } pNew->data = data; pNew->next = NULL; NODE *p = *head, *q = NULL; if (!p) { *head = pNew; return 0; } while (p) { q = p; p = p->next; } q->next = pNew; return 0; } /* @function: int slist_insert(NODE** head,DATA pos ,DATA data); @berif: 向链表节点值为pos的位置插入一个节点数据data @argument: head: 指向头指针变量的地址 pos: 插入节点位置的节点数据 data: 存储在新节点中的数据 @return : 成功返回 0 失败返回 -1 */ int slist_insert(NODE **head, DATA pos, DATA data) { NODE *pNew = (NODE *)malloc(sizeof(NODE)); if (!pNew) return -1; pNew->data = data; pNew->next = NULL; NODE *p = *head, *q = NULL; if (!p) { *head = pNew; return 0; } if (memcmp(&(p->data), &pos, sizeof(DATA)) == 0) { pNew->next = *head; *head = pNew; return 0; } while (p) { if (memcmp(&(p->data), &pos, sizeof(DATA)) == 0) { pNew->next = p; q->next = pNew; return 0; } q = p; p = p->next; } q->next = pNew; return 0; } /* @function: NODE* slist_find(const NODE* head,DATA data); @berif: 查找链表数据data @argument: head: 指向头指针变量 data: 待查找的数据 @return : 成功返回节点的地址 失败返回NULL */ NODE *slist_find(const NODE *head, DATA data) { const NODE *p = head; while (p) { if (memcmp(&(p->data), &data, sizeof(DATA)) == 0) { return (NODE *)p; } p = p->next; } return NULL; } /* @function: int slist_update(const NODE* head,DATA old,DATA newdata); @berif: 更新链表数据old 为 newdata @argument: head: 指向头指针变量 old: 待更新的节点数据 newdata: 更新后的节点数据 @return : 成功返回 0 失败返回 -1 */ int slist_update(const NODE *head, DATA old, DATA newdata) { NODE *p = NULL; if (!(p = slist_find(head, old))) return -1; p->data = newdata; return 0; } /* @function: void slist_showAll(const NODE* head); @berif: 遍历链表数据 @argument: head: 指向头指针变量 @return : 无 */ void slist_showAll(const NODE *head) { const NODE *p = head; while (p) { printf("%d ", p->data); p = p->next; } printf("\n"); } /* @function: int slist_delete(NODE** head,DATA data); @berif: 删除链表中节点值为data的节点 @argument: head: 指向头指针变量的地址 data: 删除节点中的数据 @return : 成功返回 0 失败返回 -1 */ int slist_delete(NODE **head, DATA data) { NODE *p = *head, *q = NULL; if (!p) return -1; if (memcmp(&(p->data), &data, sizeof(DATA)) == 0) { *head = p->next; free(p); return 0; } while (p) { if (memcmp(&(p->data), &data, sizeof(DATA)) == 0) { q->next = p->next; free(p); return 0; } q = p; p = p->next; } return -1; } /* @function: void slist_destroy(NODE** head); @berif: 回收链表 @argument: head: 指向头指针变量的地址 @return : 无 */ void slist_destroy(NODE **head) { NODE *p = *head, *q = NULL; while (p) { q = p; p = p->next; free(q); } *head = NULL; }
- main.c
#include "singleList.h" int main(void) { NODE *head = NULL; if (slist_create(&head, 888) < 0) { puts("create failed"); return -1; } slist_addTail(&head, 999); slist_addTail(&head, 222); slist_addTail(&head, 666); slist_addTail(&head, 777); slist_addHead(&head, 555); slist_insert(&head, 888, 1024); slist_showAll(head); DATA data; while (0) { #ifdef DELETE printf("请输入要删除的数据:"); scanf("%d", &data); if (data == -1) break; if (slist_delete(&head, data) < 0) { puts("删除失败,请重试"); continue; } slist_showAll(head); #else NODE *pFind = NULL; DATA newdata = 512; printf("请输入要查找的数据:"); scanf("%d", &data); if (data == -1) break; // if(!(pFind = slist_find(head,data))) if (slist_update(head, data, newdata) == -1) { puts("查找的数据不存在,请重试"); continue; } // printf("查找数据:%d 内存地址:%p\n",pFind -> data, &(pFind -> data)); slist_showAll(head); #endif } slist_destroy(&head); puts("====销毁后====="); slist_showAll(head); return 0; }
「课堂练习2」
创建一个单向表,并从键盘接收数字输入,将输入的正整数按从小到大的顺序插入链表,并
在输入负整数的时候将其绝对值数据删除。每次输入后,将链表的内容打印到屏幕上。
解析:
此题考查单链表的基本思路,体会链式存储中对于插入和删除的便利性。
参考代码:
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
typedef struct node
{
int num;
struct node *next;
} listnode, *linklist;
bool init_list(linklist *phead)
{
*phead = (linklist)malloc(sizeof(listnode));
if (*phead == NULL)
return false;
(*phead)->next = NULL;
return true;
}
bool is_empty(linklist head)
{
return (head->next == NULL);
}
bool insert(linklist head, int x)
{
linklist new = (linklist)malloc(sizeof(listnode));
if (new == NULL)
{
perror("malloc failed");
return false;
}
new->num = x;
/********************************
the single linklist IS empty
*********************************/
if (is_empty(head))
{
head->next = new;
new->next = NULL;
}
/*********************************
the single linklist is NOT empty
**********************************/
else
{
linklist p, q;
p = head;
q = p->next;
while (q != NULL)
{
if (q->num < x)
{
q = q->next;
p = p->next;
continue;
}
break;
}
new->next = q;
p->next = new;
}
return true;
}
bool delete(linklist head, int x)
{
if (is_empty(head))
return false;
linklist p, q;
p = head;
q = p->next;
while (q != NULL)
{
if (q->num != x)
{
p = p->next;
q = q->next;
continue;
}
p->next = q->next;
free(q);
return true;
}
return false;
}
void show(linklist head)
{
if (is_empty(head))
return;
linklist p = head->next;
while (p != NULL && p->next != NULL)
{
printf("%d-->", p->num);
p = p->next;
}
printf("%d\n", p->num);
}
int main(void)
{
linklist head;
init_list(&head);
int tmp, ret;
while (1)
{
ret = scanf("%d", &tmp);
if (ret != 1)
exit(0);
if (tmp >= 0)
{
if (!insert(head, tmp))
fprintf(stderr, "insertion falied!\n");
else
show(head);
}
else
{
if (!delete (head, -tmp))
fprintf(stderr, "%d does NOT exist!\n", -tmp);
else
show(head);
}
}
fprintf(stderr, "Bye-Bye!\n");
return 0;
}
5.9 链表优缺点
链式存储中,所有节点的存储位置是随机的,他们之间的逻辑关系用指针来确定,跟物理存
储位置无关,因此从上述示例代码可以很清楚看到,增删数据都非常迅速,不需要移动任何
数据。另外,又由于位置与逻辑关系无关,因此也无法直接访问某一个指定的节点,只能从
头到尾按遍历的方式一个个找到想要的节点。简单讲,链式存储的优缺点跟顺序存储几乎是相对的。
总结其特点如下:
- 优点
1. 插入、删除时只需要调整几个指针,无需移动任何数据
2. 当数据节点数量较多时,无需一整片较大的连续内存空间,可以灵活利用离散的内存
3. 当数据节点数量变化剧烈时,内存的释放和分配灵活,速度快
- 缺点
1. 在节点中,需要多余的指针来记录节点之间的关联。
2. 所有数据都是随机存储的,不支持立即访问任意一个随机数据。
5.10 循环链表【扩展】
所谓的循环,指得是将链表末尾节点循环地指向链表表头。比如,单向链表变成循环链表的
示意图如下所示:
循环链表的操作跟普通链表操作基本上是一致的,只要针对循环特性稍作修改即可。比如:
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <stdbool.h>
typedef struct node
{
// 以整型数据为例
int data;
// 指向相邻的下一个节点的指针
struct node *next;
} node;
// 初始化一个空的带头节点的循环连表
node *initList()
{
node *head = malloc(sizeof(node));
if (head != NULL)
{
head->next = head;
}
return head;
}
// 创建一个新节点
node *newNode(int data)
{
// 分配一个新节点的内存
node *new = malloc(sizeof(node));
if (new != NULL)
{
new->data = data;
new->next = new;
}
return new;
}
// 插入链表的头部
void insertHead(node *head, node *new)
{
// a.
new->next = head->next;
// b.
head->next = new;
}
// 判断链表是否为空
bool isEmpty(node *head)
{
return head->next == head;
}
// 遍历链表
void show(node *head)
{
if (isEmpty(head))
return;
for (node *p = head->next; p != head; p = p->next) // 这里不能是p++,不是有序的
{
printf("%d\t", p->data);
}
printf("\n");
}
// 将链表首部节点剔除
node *removeNode(node *head, int data)
{
node *tmp, *p;
for (p = head, tmp = p->next; tmp != head; p = p->next, tmp = tmp->next)
{
// 找到要删除的节点的上一个节点指针
if (tmp->data == data)
{
p->next = tmp->next;
tmp->next = tmp; // 解除引用
return tmp;
}
}
return NULL;
}
// 销毁链表
node *destroy(node *head)
{
while (head->next != head)
{
node *tmp = head->next;
head->next = tmp->next;
free(tmp);
}
return NULL;
}
int main()
{
// 初始化一个空链表
node *head = initList();
// 插入一些数据都链表的头部
for (int i = 1; i <= 5; i++)
{
// 1. 创建新节点
node *new = newNode(i);
// 2. 将新节点置入链表
insertHead(head, new);
}
// 遍历链表,输出各元素
show(head);
// 输入您要删除的节点
int n;
printf("输入您要删除的节点:\n");
while (true)
{
scanf("%d", &n);
if (n == 0)
{
break; // 测试销毁,先退出循环
}
node *p = removeNode(head, n);
if (p == NULL)
{
printf("没有您要删除的节点!\n");
continue;
}
free(p);
show(head);
}
// 销毁链表,销毁之后返回NULL,此时这个链表就不能在用了
head = destroy(head);
}
面试题:
对于一个具有
n
和节点的单向链表
(n > 100)
, 只通过一次遍历找到倒数第
50
个节点
提示: 借助于 2个指针,一个在前,一个在后。
思路:
先让前一个指针遍历到第50个节点的位置,然后后一个指针,再跟随前一个指针一起向后移动,当前一个指针遍历完所有节点,后一个指针就是指向了倒数第50个节点的位置。