目录
一.基础概念
二. 论文常用的Renyi散度结论
性质1:对分布进行确定的函数变换,只会降低Renyi散度。
性质2:可忽略性质的传递(计算复杂性理论)
性质3:Renyi散度与离散的高斯分布(格密码中的概念)
有关Renyi散度的基本介绍挺多博客已经写了。本文章主要介绍最基础的概念,以及近些年论文中为啥老喜欢引用这个概念。
Renyi散度起源于Renyi熵,与香农熵类似,都是用来衡量不确定性的。其中Renyi是人名,主要是为了纪念:
一.基础概念
Renyi熵的形式化定义如下:
Let X(E) denote the probability
that event E occurs under distribution χ. We let Supp(X)=\lbrace
x:X(x)\neq0\rbrace
其中代表阶数,通常为正整数,取决于定义。代表第i个事件的概率。
Renyi散度主要是描述两个分布之间的关系。对一个离散的概率分布X,其定义域记作,其实就是概率不为零的点的集合。形式化的定义如下:
Let denote the probability
that event E occurs under distribution χ. We let
对于两个离散的概率分布P和Q,假定
(其实就是Q的取值更多),2阶Renyi散度定义如下:
二. 论文常用的Renyi散度结论
性质1:对分布进行确定的函数变换,只会降低Renyi散度。
对于两个离散的概率分布P和Q,假定
,对任意给定的函数f,都有:
性质2:可忽略性质的传递(计算复杂性理论)
对于两个离散的概率分布P和Q,假定
,从分布Q中取子事件
,都有:
这个性质其实在密码学中很有用,为啥这么讲呢。如果可以证明的上界
为多项式。那么当事件E在分布Q中发生的概率
可忽略,就可以推出事件E在分布P中发生的概率也可忽略。
性质3:Renyi散度与离散的高斯分布(格密码中的概念)
接触过格密码(参考我之前介绍过格密码)的人可能见过一个符号
,这个符号啥意思呢?D代表离散的高斯分布,
代表该高斯分布的取值全为整数模q,
代表离散高斯分布的标准差,m代表维度,也就是:
:关于原点对称的m维离散高斯分布
给一个不太大的数e,那么:
:中心点略微偏移原点的m维离散高斯分布。
好了,现在可以解释第三个性质了。
固定三个整数
,有一个上限值
,离散高斯分布的标准差满足
。令
,且满足
,那么有:
这个性质看起来有点长,其实是想解释把离散高斯分布平移一点点后,该分布与原始的离散高斯分布的Renyi散度是有上界的。密码学非常关注多项式,指数,次指数等复杂度,利用该定理,比如令离散高斯分布的标准差
时,可得
。这其中的数学计算就暂时省掉了,密码学总是有许多的数学计算。。。。。
二.关于网络安全资源
网络安全是当今信息时代中非常重要的一环。无论是找工作还是感兴趣,都是未来职业选择中上上之选,为了保护自己的网络安全,学习网络安全知识是必不可少的。
如果你是准备学习网络安全或者正在学习,下面这些你应该能用得上:
①网络安全学习路线
②20份渗透测试电子书
③安全攻防357页笔记
④50份安全攻防面试指南
⑤安全红队渗透工具包
⑥网络安全必备书籍
⑦100个漏洞实战案例
⑧安全大厂内部视频资源
⑨历年CTF夺旗赛题解析😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓

一、网络安全学习路线
网络安全(黑客)学习路线,形成网络安全领域所有的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、网络安全教程视频
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
三、网络安全CTF实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这里带来的是CTF&SRC资料&HW资料,毕竟实战是检验真理的唯一标准嘛~
四、网络安全面试题
最后,我们所有的作为都是为就业服务的,所以关键的临门一脚就是咱们的面试题内容,所以面试题板块是咱们不可或缺的部分,这里我给大家准备的就是我在面试期间准备的资料。
网安其实不难,难的是坚持和相信自己,我的经验是既然已经选定网安你就要相信它,相信它能成为你日后进阶的高效渠道,这样自己才会更有信念去学习,才能在碰到困难的时候坚持下去。
机会属于有准备的人,这是一个实力的时代。人和人之间的差距不在于智商,而在于如何利用业余时间,只要你想学习,什么时候开始都不晚,不要担心这担心那,你只需努力,剩下的交给时间!
全套网络安全学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
