问题描述
在使用人工智能执行复杂任务时,多智能体AI方法对于有效的工作流程增强至关重要,因为它能够实现专业化。这意味着每个智能体可以处理特定任务或情境,从而提高整体的适应性和性能。例如,在涉及威胁建模的安全工作流程中,一个智能体可以专注于理解系统架构和安全目标,另一个智能体可以收集系统组件和数据字典详细信息,而其他智能体则定义信任边界、构建威胁模型并制定对策。这种协调的方法使得自动化具有动态性、可扩展性和上下文感知能力,超越了单一智能体系统或迭代的人工提示。
工作流程增强的概念是利用更先进技术与工具对传统工作流程进行改进。需要注意的是,它并非取代人类的参与,而是通过减少手动劳动来补充人类工作,使团队能够专注于任务的战略层面或复杂细节。例如,在本文后面讨论的威胁建模用例中,增强输出的目的并不是替代安全架构师得出的结论,而是作为他们执行过程中的起点,指导并简化他们的流程,为更明智和高效地进行威胁建模提供基础。
系统概述
本项目旨在为企业工作流程增强提供一个框架。关键策略和概念包括:
检索增强生成(RAG):利用RAG创建增强型提示,为LLM提示提供更好的上下文信息,从而提高生成输出的相关性和准确性。例如,在安全应用案例中(见用例部分),RAG可以摄入组织的产品安全需求、GRC政策以及来自NIST和PCI DSS等安全框架的要求。摄入的数据将作为用户向LLM提示的上下文信息。这样,最终输出将基于此上下文生成,而非纯粹依赖于LLM的训练数据。
提示工程学:为每个由智能体执行的任务精心设计了结构化的提示,以便LLM有明确的界限,能够在既定参数内操作并产生更相关的结果。当与AI智能体结合时,精心设计的提示促进了任务的有效完成。
AI智能体:利用AI智能体在工作流程中执行特定任务,并将一个任务的输出传递给下一个任务。与需要人为干预反复为每个任务编写提示不同,AI智能体被赋予了特定的角色和职责,自主协作以达到期望的最终输出。这里使用了CrewAI。
这个多功能框架可以应用于各种需要特定上下文、相关信息的领域。
系统架构
架构图采用了C4模型,分阶段展示了应用程序的不同层次和复杂性。第一级提供了高级概览,随后的级别(第二级)深入到特定组件/服务,提供更详细的信息。
High-Level System Context
数据处理服务
此服务从企业源或知识库中提取信息。在产品安全使用案例中,产品安全需求和参考架构制品就是这类知识库的例子。当数据被放置在对象存储中时,会触发一个事件,将该数据放入队列以待处理。数据预处理器从队列中取出数据,并根据数据类型(文档、图片、音频或视频)进行处理。
RAG 管理服务
来自数据处理服务的数据被发送到这里。首先,根据预设定的分块指标对数据进行分块。从这些分块中创建嵌入,并保存在向量数据库中。
知识检索服务容器
知识检索服务利用增强型提示与AI代理协同工作,以组织任务并获取最终输出。
UI Layout
安全架构师执行多项任务以确保产品安全。这些任务包括安全审查、代码审查和威胁建模。在进行威胁建模时,安全架构师需要详细了解被审查应用程序的上下文。所需的一些信息包括:
系统理解
系统组件信息
数据字典
信任边界
威胁场景
防御措施
此用例的参考文献
为了获取这些信息,针对每项专业需求创建任务,各代理根据来自其他代理的输入和上下文独立工作,生成汇总为最终输出的信息。
未来工作方向:
声明式工作流程定义:为了便于非技术用户轻松增强其工作流程,正在探索摄入工作流程定义(以YAML或其他结构化格式)的能力。此工作流程定义将自动生成执行定义工作流程所需的代理和任务。
扩展至产品安全之外:该解决方案将发展成为一个更通用的工作流增强框架,其适用范围不仅限于产品安全。
挑战:
扩展与维护当前POC作为企业级生产应用存在多项挑战,尚在解决中。这些挑战包括:
RAG治理问题:管理RAG系统中的数据存在困难,如删除过时数据、更新现有记录、确定有效的数据分块策略,以及决定在增强提示的上下文中应包含多少相似搜索结果。
模型视觉模式限制:根据上传图表的结构和详细程度,模型的视觉模式可能产生肤浅或相关性较低的见解。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
