【深度研究】AI Agent赋能传统企业转型:30个智能体应用案例剖析
【实战指南】AI Agent商业案例精选,助你技术选型和落地实施
AI Agent商业应用指南:30个典型场景解读
【案例精选】AI Agent改变企业效率的革命:30个应用项目复盘
AI Agent重塑企业未来:30个创新应用与发展方向
双12期间,电商领域没有激起太多波澜,人工智能界仍然声浪迭起。
这一边,OpenAI开启12场直播的第五天,ChatGPT与Apple设备的集成升级没有引起热议,却被很多用户打上了“平平无奇”的标签。
另一边,谷歌却迎来了与OpenAI截然不同的待遇。新一代大模型Gemini 2.0一发布便吸足了眼球,被认为是在狙击OpenAI。
Gemini 2.0 Flash是Gemini 2.0家族的第一个模型,这是一个具有多模态输入输出能力和代理功能的AI模型,该模型具备更快的速度和更强的性能,支持文本、音频和图像的集成响应,并能进行空间理解、视频理解等新功能。
此外,Gemini 2.0 Flash还支持原生工具调用、实时音视频流输入以及多模态实时API等功能。谷歌正在积极探索AI代理的应用,包括编程助手、数据分析代理、通用AI助手和游戏伴侣等。
Gemini 2.0 Flash主推原生多模态输入输出+ Agent,速度比 1.5 Pro 快两倍,关键性能指标甚至超过了1.5 Pro,支持原生工具调用、以及实时音视频流输入等新功能。因此,Gemini 2.0 Flash可以做所有AI Agent的底座,基于其构建的AI Agent将能够实现更丰富的功能。
谷歌正在积极探索AI Agent应用,目标是打造能够自主理解、规划和执行任务的智能助手。
与之前谷歌在企业级领域折腾的各种智能体不同,这次发布的AI Agent相关产品,C端用户可以体验。
目前Gemini 2.0 Flash及API免费可用,可以通过Google AI Studio和Vertex AI中的Gemini API使用,基本不要钱,每分钟最多15个提问,每天最多1500个提问。感兴趣的朋友,可以通过以下网址登录Google AI Studio进行体验。
从Gemini 2.0模型来看,谷歌接下来也要跟微软一样,真正在AI Agent领域发力了。巨头们都在持续发力AI Agent,我们自然也要紧跟这一趋势,争取围绕智能体做一些能够提升效率及创业、创富的事情。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
