ComfyUI和Photoshop相结合,PS内实现:文生图,图生图,高清放大,局部重绘,面部修复,设计师福音

本文主要介绍:ComfyUI和Photoshop相结合,一个平台实现:图像生成,放大,局部重绘,面部修复,实时绘画

简直是设计师的福音。

主要包括:

  • Photoshop 的安装以及插件的安装

    • Creative Cloud 安装,Photoshop最新版的安装破解
    • ComfyUI插件在PS中的安装
  • ComfyUI的插件安装,模型下载,工作流配置

  • Photoshop中AI插件的使用

    • 文生图
    • 图生图
    • 局部重绘
    • 放大
    • 面部修复

Photoshop 的安装以及插件的安装

通过Creative Cloud 安装PS

下载并安装Creative Cloud:【必须得,否则插件无法安装】

https://creativecloud.adobe.com/apps/download/creative-cloud?locale=zh-Hans

img

注册Adobe账号并登录

破解补丁下载:https://github.com/wangzhenjjcn/AdobeGenp/releases

步骤如下:

img

ComfyUI插件在PS中的安装

关闭Creative CloudPS,下载安装程序以及插件:

ZXP UXP Installer

https://aescripts.com/learn/zxp-installer/

PS 插件

https://raw.githubusercontent.com/NimaNzrii/comfyui-photoshop/main/Install_Plugin/3e6d64e0_PS.ccx

img

启动PS查看:

img

注意,可能需要配置一下PS首选项:

img

ComfyUI的插件安装以及模型下载,工作流配置

comfyui-photoshop 插件安装

插件地址:https://github.com/NimaNzrii/comfyui-photoshop

Manager 内搜索并安装:

img

然后重启ComfyUI。

其他需要的插件:

  • comfyui-photoshop:https://github.com/NimaNzrii/comfyui-photoshop
  • MTB Nodes:https://github.com/melMass/comfy_mtb
  • Rgthree’s ComfyUI Nodes:https://github.com/rgthree/rgthree-comfy
  • Use Everywhere:https://github.com/chrisgoringe/cg-use-everywhere

ComfyUI-Photoshop 工作流以及模型

工作流

原版 https://openart.ai/workflows/lreWarJbqiYPcDXnD8hh

img

大模型 也可以选用其他大模型

  • EpicRealism Natural Sin RC1 VAE:

    https://civitai.com/api/download/models/143906?type=Model&format=SafeTensor&size=pruned&fp=fp16

  • EpicRealism pure Evolution V5-inpainting

    https://civitai.com/api/download/models/134361?type=Model&format=SafeTensor&size=pruned&fp=fp16

Loras

  • Detailer Lora https://civitai.com/api/download/models/62833?type=Model&format=SafeTensor

其他模型通过Manager搜索如下关键字进行安装:

img

  • LCM LoRA SD1.5
  • ControlNet-v1-1 (lineart; fp16)
  • ControlNet-v1-1 (scribble; fp16)
  • ControlNet-v1-1 (inpaint; fp16)
  • 4x-UltraSharp

Photoshop中AI插件的使用

img

Settings

img

ComfyUI Web

主要是在PS中打开ComfyUI Web界面的,就不用浏览器和PS来回切换了。

img

Ai Panel

img

img

主要功能:

img

我在原版的基础上增加了如下功能:

  • Codeformer For Face 面部修复
  • GFPGAN For Face 面部修复
  • Upscale By Topaz 放大
  • BiRefNet 抠图

文末可获取~

如果需要增加自定义功能,只需要将所需功能放入到组里,然后给组重名个名字即可,如下图:

img

文生图

PS 新建画布,分辨率推荐在 512-1024 px 之间,选择文生图,6步,然后输入提示词,最后点击渲染。

img

img

生成完毕后,点击图片,就可以复制到PS新图层里。

img

图生图

如下:选择图生图,另外两个分别是带Lineart控制和scribble控制的:img

img

6步,然后输入提示词,点击右侧的重绘幅度,越小越接近原图,最后点击渲染。

同样,点击生成的图片复制到新的图层里。

局部重绘

先用套索工具,选择想要重绘的部分,如下图,然后选择“In-Paint” 重绘,

输入提示词:glasses,最后点击生成:

img

高清放大

选择如下任意一个即可:img

img

面部修复

PS打开要修复的图像,然后选择以下任意一种进行修复面部img

img

为了帮助大家更好地掌握 ComfyUI,我花了几个月的时间,撰写并录制了一套ComfyUI的基础教程,共六篇。这套教程详细介绍了选择ComfyUI的理由、其优缺点、下载安装方法、模型与插件的安装、工作流节点和底层逻辑详解、遮罩修改重绘/Inpenting模块以及SDXL工作流手把手搭建。

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

一、ComfyUI配置指南

  • 报错指南
  • 环境配置
  • 脚本更新
  • 后记

img

二、ComfyUI基础入门

  • 软件安装篇
  • 插件安装篇

img

三、 ComfyUI工作流节点/底层逻辑详解

  • ComfyUI 基础概念理解
  • Stable diffusion 工作原理
  • 工作流底层逻辑
  • 必备插件补全

img

四、ComfyUI节点技巧进阶/多模型串联

  • 节点进阶详解
  • 提词技巧精通
  • 多模型节点串联

img

五、ComfyUI遮罩修改重绘/Inpenting模块详解

  • 图像分辨率
  • 姿势

img

六、ComfyUI超实用SDXL工作流手把手搭建

  • Refined模型
  • SDXL风格化提示词
  • SDXL工作流搭建

img

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

img

在这里插入图片描述

### ComfyUI 中特定节点的功能与使用 #### MTB 节点 MTB (Make The Best) 是一个面向动画制作的节点包,专为增强ComfyUI工作流程设计[^3]。通过此节点可以实现更复杂的动画效果处理,在ComfyUI中加入这些节点能够极大地扩展软件的应用范围。 ```python # 加载MTB节点库并初始化环境 from comfy_mtb import initialize_environment, add_node_to_workflow initialize_environment() add_node_to_workflow('mtb_animation') ``` #### FIZZ 节点 虽然具体描述未提及FIZZ节点的信息,但从上下文中推测这可能是用于调整像细节的一个工具[^2]。它允许用户轻松地控制片中的精细度变化,从而满足不同场景下的需求。实际操作上,只需将该节点融入现有的工作流即可效。 ```python # 应用FIZZ节点来调节像细节 def apply_fizz(image_data): from fizz_module import adjust_detail_level adjusted_image = adjust_detail_level(image_data) return adjusted_image ``` #### KJ 节点 对于KJ节点的具体说明同样缺失,不过依据前文提到的内容推断其应具备某种形式的数据处理能力或是与其他组件交互的方式[^1]。为了更好地利用这类高级特性,建议深入研究官方文档或社区资源获取更多指导。 ```python # 假设性的KJ节点应用实例 import kj_operations as kjop processed_output = kjop.execute_kj_function(input_parameters) ``` #### RG 节点 RG(Remove Background) 类似于其他背景移除技术,旨在简化像编辑过程的一部分——即去除不需要的部分以便后续加工[^4]。这种类型的节点通常非常直观易用,适合初学者快速掌握。 ```python # 利用RG节点执行去背任务 from rg_background_removal import remove_bg_from_image cleaned_image = remove_bg_from_image(source_image_path) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值