【 十分钟学会云部署Flux ComflyUI, 保姆级教程,40s快速出图(附Flux工作流和模型资源)!】

三石AI

Flux.1作为目前最强开源文生图模型,Flux[dev]和Flux[schnell]均支持本地部署,ComfyUI也跟进了支持

但对于一般用户来说,本地部署相对比较困难,一方面是电脑性能问题,想要顺畅运行,必须要16G显存,性能要求极高,而且出图巨慢,另一方面,整个模型大小达到50G+,下载安装等都比较浪费时间。

今天这里和大家分享的方式是针对小白十分友好的云端部署方案,超级简单,十分钟即可实现部署,使用4090可以实现40s一张图,而且完全免费!

流程十分简单,主要有以下几步:

1. 租用显卡创建实例

2. 部署ComfyUI

3. 部署FLUX.1

4. 导入工作流出图

下面我们就快速开始!

01 | 租用显卡创建实例

目前国内的显卡租用的平台很多,每个平台也都大同小异,思路也完全一致

这里以我自己使用的丹摩damodel为例来演示,除了创建实例,其实2,3,4步在其他算力平台以及本地都是通用的

说明:damodel其实是自己随便搜的一个平台,无任何广告!整体试用下来效果还不错,部署也比较方便,但不好的地方是目前不支持关机操作,只能通过释放实例才能终止计费,每次都得重新部署。

不过推荐的主要原因还是目前新用户免费赠送¥50代金券,可以直接用,相当于可以白嫖24h的4090,真香!

首先注册damodel,十分简单,这里就不再赘述

damodel注册https://www.damodel.com/register?source=U9LJwrYdwfxfnWxN5I7Y

img

注册完成后,选择控制台,选择创建实例

img

选择4090,目前价格大概是2块钱每小时

img

选择数据硬盘,额外增加200G数据盘

注意:Flux文件超级大(50G+,解压后100G+),数据硬盘需要大一些,!!!必须大于200G!!是的,我就是因为这个原因重新配置了三次的憨憨!

img

镜像直接选择:FLUX.1-dev-fp8+ComfyUI

img

创建自己的密钥对

img

输入自己的密钥对名称,点击确认后,自动下载密钥对

img

设置完成后,选择自己的密钥对,点击立即创建即可

img

点击完成后状态会显示创建中

img

创建完成后显示运行中,点击JupyterLab,开始运行

img

进入后点击Terminal,打开终端

img

02 | 部署Comfy UI

打开终端后,开始部署Comfy UI

# gitCode-github加速计划代码仓库
git clone https://gitcode.com/gh_mirrors/co/ComfyUI.git

img

此时右侧已经可以看到ComfyUI目录,使用以下命令进入目录

 cd ComfyUI/

img

使用命令开始安装必要的**Python库,**可能出现部分库报错和警告的问题,忽略即可

pip install -r requirements.txt --ignore-installed

img

耐心等待安装完成,安装完成后执行以下命令,启动ComfyUI

python main.py --listen

img

看到以上界面,说明部署成功!

02 | 部署FLUX.1

下载需要的模型

# 下载完整FLUX.1-dev模型
wget http://file.s3/damodel-openfile/FLUX.1/FLUX.1-dev.tar
# 下载完整FLUX.1-schnell模型
wget http://file.s3/damodel-openfile/FLUX.1/FLUX.1-dev.tar

选择任意一种自己需要的,这里演示使用dev模型,但注意dev模型不可商用

点击右上角的+,打开一个新的终端,

img

执行以下命令,耐心等待下载完成,平台已预制FLUX.1相关资源,可通过内网高速下载预计需要2~3min

wget http://file.s3/damodel-openfile/FLUX.1/FLUX.1-dev.ta2

img

下载完成

img

解压文件,注意前面不要包含空格

tar -xf FLUX.1-dev.tar

‍耐心等待解压完成

img

打开FLUX.1-dev文件夹可以看到这两个文件

img

依次执行以下命令,将文件移动到对应的目录位置

# 进入解压后的文件夹
cd /root/workspace/FLUX.1-dev
# 移动文件
mv flux1-dev.safetensors /root/workspace/ComfyUI/models/unet/
mv ae.safetensors /root/workspace/ComfyUI/models/vae/

img

接下来回到根目录,下载完整Clip模型:

# 进入JupyterLab根目录
cd /root/workspace
# 下载文件
wget http://file.s3/damodel-openfile/FLUX.1/flux_text_encoders.tar

img

解压文件

tar -xf flux_text_encoders.tar

继续移动指定文件到指定目录,以下几个命令依次运行

# 进入解压后的文件夹
cd /root/workspace/flux_text_encoders
# 移动文件
mv clip_l.safetensors /root/workspace/ComfyUI/models/clip/
mv t5xxl_fp16.safetensors /root/workspace/ComfyUI/models/clip/

img

准备工作全部完成,准备启动ComfyUI

我们回到第一个Terminal界面,可以看到链接:http://0.0.0.0:8188,记住最后的端口8188

img

进入GPU 云实例页面,点击操作-更多-访问控制

页面:https://www.damodel.com/console/instance

img

点击添加端口

img

输入刚才的端口8188,确认即可

img

添加成功后,复制访问链接,粘贴到新窗口访问即可

img

访问成功

img

04 | 导入工作流出图

接下来我们就可以开始使用生成图片了

目前是默认的工作流,缺少对应的模型,无法直接使用

我们使用官方提供的dev工作流示例,可以直接在后台回复关键词 Flux 获取

官方示例地址:https://comfyanonymous.github.io/ComfyUI_examples/flux/

只需要点击Load,找到提供的工作流图片

img

img

可以看到工作流更新为新的工作流,本次主要面向小白,关于工作流的介绍不多赘述,以下几个主要的节点需要知晓:

CLIP Text Encode:输入Prompt

Width/Heigth:设置长宽

Save Image:输出图片预览

img

点击Queue Prompt,即可开始按照默认的提示词进行图片生成

img

最终右侧预览位置可以看到生成的图像,按照4090测试速度来看,首次加载模型生成一张图片大概需要2~3分钟,模型加载完成后,大概只需要40s

img

我们也可以在ComfyUI/output文件夹下看到我们生成的所有图片

img

如果你成功生成了以上图片,那么恭喜你!你已经学会了最基础的如何使用Flux生成图片!

注意事项

如果关闭了服务器链接,只需要执行以下命令,启动即可重新访问

cd /root/workspace/ComfyUI
python main.py --listen

部分情况,如果没有正常终止进程,可能出现以下报错

OSError: [Errno 98] error while attempting to bind on address (‘0.0.0.0’, 8188): address already in use

img

报错解决方案

执行以下命令,查看进程

ps aux

找到之前未终止的Listen进程,找到PID,我这里是201,注意每一个人不一样

img

执行以下命令即可,终止即可

kill -9 PID #你自己的对应的PID

执行以后,重新启动即可成功,继续按照之前的链接访问

img

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。

二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

1.stable diffusion安装包 (全套教程文末领取哈

随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。

最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本。

在这里插入图片描述

2.stable diffusion视频合集

我们在学习的时候,往往书籍代码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入门stable diffusion,科学有趣才能更方便的学习下去。

在这里插入图片描述

3.stable diffusion模型下载

stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

在这里插入图片描述

4.stable diffusion提示词

提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

在这里插入图片描述

5.AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

在这里插入图片描述

### 如何在 ComfyUI部署 Flux 工作流 #### 准备环境 为了成功部署 Flux 工作流ComfyUI 平台上,确保计算机已安装 Python Git。这些工具对于下载必要的库文件支持软件包至关重要[^3]。 #### 获取项目源码 通过 GitHub 或其他版本控制系统克隆 Flux 的官方仓库至本地机器。此操作允许访问最新的开发资源以及社区贡献的内容更新。 ```bash git clone https://github.com/path_to_flux_repo.git ``` #### 安装依赖项 进入刚创建的工作目录并执行 pip 来安装所需的Python模块其他外部依赖关系。这一步骤有助于构建稳定运行的应用程序框架。 ```bash cd path_to_flux_repo pip install -r requirements.txt ``` #### 启动服务端口 启动 Flask Web Server 或者任何用于提供 API 接口的服务进程。通常情况下,默认监听地址为 `http://127.0.0.1:8000` ,但可以根据实际情况调整配置参数以适应不同的网络环境需求。 ```bash python app.py ``` #### 进入形界面设置 打开浏览器输入上述提到的 IP 地址加上指定端口号即可进入到 ComfyUI 用户交互界面上,在这里能够直观地管理各类任务流程定义与调度安排等功能特性[^2]。 #### 测试连接稳定性 确认所有组件之间通信正常之后便完成了整个集成过程。此时应该尝试上传一些测试数据集来验证系统的整体性能表现是否达到预期目标水平;同时也要注意观察日志记录里是否存在异常错误提示信息以便及时排查潜在隐患问题所在之处。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值