[ComfyUI]InvSR:低显存4K图像超分辨率!8G可运行高清放大

[ComfyUI]InvSR:低显存4K图像超分辨率!

🌹大家好!感谢大家的支持与鼓励。在AIGC探索道路上,我将与你一路同行图片

InvSR简介

今天文章主题介绍一款基于扩散反演的新型图像超分辨率技术模型:InvSRInvSR提出了一种基于扩散反演的新型图像超分辨率(SR)技术,旨在利用大型预训练扩散模型中丰富的图像先验知识来提升超分辨率性能。研究人员设计了一种“部分噪声预测”策略,用于构建扩散模型的中间状态,这一状态将作为起始采样点。该技术的核心是一个深度噪声预测器,用于估计正向扩散过程中的最优噪声图。一旦训练完成,这个噪声预测器可用于沿扩散轨迹部分初始化采样过程,从而生成所需的高分辨率结果。

图片

  • Github:https://github.com/zsyOAOA/InvSR
  • 在线体验:https://huggingface.co/spaces/OAOA/InvSR

性能评估

与现有方法相比,InvSR 提供了一种灵活且高效的采样机制,支持任意数量的采样步数,从一步到五步不等。即使仅使用单个采样步骤,该模型具有先进的性能。

图片

图片

图片

InvSR ComfyUI体验

当前社区已有ComfyUI插件ComfyUI_InvSR支持,可以通过ComfyUI_InvSR 的搜索安装插件。模型文末网盘获取!

  • ComfyUI_InvSR插件:https://github.com/yuvraj108c/ComfyUI_InvSR
  • Diffusers 模型stabilityai/sd-turbo模型首次运行将自动下载到ComfyUI/models/diffusers 目录。下载地址:https://huggingface.co/stabilityai/sd-turbo/tree/main
  • InvSR 模型noise_predictor_sd_turbo_v5.pth 模型将自动下载到ComfyUI/models/invsr 目录。下载地址:https://huggingface.co/OAOA/InvSR/blob/28e96115e767c699f2e40a85d04a8f5ebf0a685e/noise_predictor_sd_turbo_v5.pth
  • • 建议使用环境:Python 3.10, Pytorch 2.4.0, xformers 0.0.27.post2
  • 图片

Flux文生图&混元视频工作流

最新LIBLIBAI平台已支持Flux文生图混元视频ComfyUI工作流在线体验:

  • F.1-绮梦流光-水湄凝香:https://www.liblib.art/modelinfo/134c6dd95aef48e98a22b24e003e026b
  • 文生图-Flux文生图(PuLID|LORA|Joy|SUPIR)工作流:https://www.liblib.art/modelinfo/782aacd70f604da39e83368c696a02a8?versionUuid=9c5eceb01fb94d4d93d60fe2c0bd7468
  • 文生视频-腾迅混元最强开源视频(LORA)工作流:https://www.liblib.art/modelinfo/35ee21d5f6a94204abb767ad194ab9cd?versionUuid=be674032ffa14e5597a08922556f4da0

图片

图片

InvSR超分辨率ComfyUI工作流体验

InvSR超分辨率ComfyUI工作流已上传LIBLIBAI平台可体验:https://www.liblib.art/modelinfo/fcbcf0817ede4729ae8d69f4811d7856?versionUuid=bd2a344114f943e3b0b207475c428307

图片

节点参数
  • chopping_size:在分割大图像时,控制图像块的大小。对于大图像如:对于大图像(例如,从 1k 到 4k),建议将 chopping_size 设置为 256
  • chopping_batch_size:控制从同一图像中同时处理的图像块数量。如果 GPU 内存有限,建议将 chopping_batch_size 设置为 1
  • batch_size:控制同时处理的完整图像数量。
  • color_fix:用于修复处理后图像中的色彩偏移的方法。
注意:
  • • 对于大图像放大,建议参数:chopping_size 设置为 256,GPU 内存有限,建议将 chopping_batch_size 设置为 1
  • • 单图4K大约耗时仅21秒,最低仅需8G显存可运行。

01.4K高清放大

图片

由于平台仅能上传不超过10MB图像,4K高清超过45MB。故本文采用仅截图展示。

图片
图片
图片

02.剑仙-宁姚

本案例使用Flux-绮梦流光-剑来-剑仙宁姚_国漫女神LORA模型:https://www.liblib.art/modelinfo/88bc3384e5854a97a522d35c4f94ffb6?versionUuid=5e80f31b1f2b4a4bb6261b39e8760930

pl,ningyao,A woman was dressed in black and white. She had a big sword in her hand.A clean and shiny sword.Blood and cuts on his face. There's a bloody wound on his face, apparently from a fight. There is a tree behind her. There is snow on the tree.

图片

图片图片

InvSR模型文末可获取

为了帮助大家更好地掌握 ComfyUI,我花了几个月的时间,撰写并录制了一套ComfyUI的基础教程,共六篇。这套教程详细介绍了选择ComfyUI的理由、其优缺点、下载安装方法、模型与插件的安装、工作流节点和底层逻辑详解、遮罩修改重绘/Inpenting模块以及SDXL工作流手把手搭建。

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

一、ComfyUI配置指南

  • 报错指南
  • 环境配置
  • 脚本更新
  • 后记

img

二、ComfyUI基础入门

  • 软件安装篇
  • 插件安装篇

img

三、 ComfyUI工作流节点/底层逻辑详解

  • ComfyUI 基础概念理解
  • Stable diffusion 工作原理
  • 工作流底层逻辑
  • 必备插件补全

img

四、ComfyUI节点技巧进阶/多模型串联

  • 节点进阶详解
  • 提词技巧精通
  • 多模型节点串联

img

五、ComfyUI遮罩修改重绘/Inpenting模块详解

  • 图像分辨率
  • 姿势

img

六、ComfyUI超实用SDXL工作流手把手搭建

  • Refined模型
  • SDXL风格化提示词
  • SDXL工作流搭建

img

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

img

在这里插入图片描述

<think>好的,我现在需要帮助用户构建一个深度学习图像超分辨率重建系统的架构,并指导其实现。首先,我需要回顾用户提供的引用内容,确保信息准确。用户引用了三个资料,分别涉及传统方法和深度学习方法,以及使用Java和DL4J-Zoo构建系统。用户的问题集中在系统架构和实现上,所以需要详细分解步骤。 首先,系统架构应该包括数据准备、模型选择、训练流程、推理部署和评估优化几个部分。数据准备方面,引用1提到需要高分辨率和下采样的分辨率图像对,可能需要数据增强。模型构建方面,引用3提到使用DL4J-Zoo,但通常深度学习超分模型如SRCNN、ESRGAN等更为常见,可能需要考虑用户使用的框架是否是Java,或者是否可以用Python的框架如PyTorch或TensorFlow更合适。不过用户引用3提到Java的DL4J,所以可能需要适配这一点。 接下来,实现步骤需要分模块。数据预处理部分需要下采样和增强,引用1和2都有提到。模型构建部分,用户可能需要选择适合的卷积网络结构,比如SRResNet或ESRGAN的生成器部分。训练阶段需要定义损失函数,比如MSE或GAN的对抗损失,引用2提到端到端映射,所以监督学习是关键。推理部分则是加载模型进行预测,评估指标如PSNR、SSIM,引用1中的传统方法评估可能也有参考。 然后,考虑用户可能的隐藏需求,比如系统是否实时、硬件资源限制,或者是否需要部署到特定平台。引用3提到Java库,可能用户已有Java环境,需要确认是否必须使用Java还是可以换用其他语言。此外,引用2提到视频超分的复杂性,但用户明确是单图像,所以可以专注于SISR。 可能的问题点包括数据集的获取,模型复杂度的权衡,训练时间的估计,以及如何优化推理速度。需要确保建议的架构既不过于复杂,又能够达到预期效果。比如,选择轻量级模型如ESPCN可能适合实时应用,而ESRGAN适合高质量重建。 最后,生成相关问题需要考虑用户后续可能遇到的挑战,比如如何选择损失函数,数据不足怎么办,模型压缩等。需要确保问题覆盖系统实现的各个方面,帮助用户深入理解。</think>以下是为您整理的深度学习图像超分辨率重建系统架构设计与实现详解: ### 一、系统架构设计 $$ \begin{cases} \text{输入层} \rightarrow \text{分辨率图像} \\ \text{特征提取层} \rightarrow \text{卷积层堆叠} \\ \text{非线性映射层} \rightarrow \text{ReLU激活函数} \\ \text{重建层} \rightarrow \text{亚像素卷积} \\ \text{输出层} \rightarrow \text{高分辨率图像} \end{cases} $$ 主要模块组成: 1. **数据预处理模块**:采用双三次下采样生成LR-HR图像对[^1] 2. **神经网络模块**:推荐使用EDSR(增强深度残差网络)或RCAN(残差通道注意力网络) 3. **训练优化模块**:结合MSE损失与感知损失(perceptual loss) 4. **推理部署模块**:支持GPU加速和多尺度重建 ### 二、核心实现步骤 #### 1. 数据准备阶段 ```python # 示例:数据增强流程 def augment_data(hr_img): lr_img = cv2.resize(hr_img, (hr_img.shape[1]//4, hr_img.shape[0]//4), interpolation=cv2.INTER_CUBIC) return random_rotate(random_flip(lr_img)), random_rotate(random_flip(hr_img)) ``` #### 2. 模型构建示例(以ESRGAN为例) $$ G_{\theta}(I^{LR}) = \underbrace{\text{ResBlock}_{1}\circ\cdots\circ\text{ResBlock}_{n}}_{\text{残差密集块}} \circ \text{上采样层} $$ 包含16个残差块和像素混洗上采样层[^2] #### 3. 训练策略 - **两阶段训练法**: - 第一阶段:使用L1损失预训练 - 第二阶段:引入对抗损失和特征匹配损失 - **学习率设置**: $$ lr = 1e-4 \times 0.5^{\lfloor epoch/100 \rfloor} $$ #### 4. 部署优化技术 - 模型量化:FP32→INT8精度转换 - 层融合:Conv+BN+ReLU合并 - 使用TensorRT加速推理速度 ### 三、关键实现建议 1. 数据集选择:优先使用DIV2K(800训练+100验证)[^1] 2. 评估指标: $$ \text{PSNR} = 10\log_{10}(\frac{MAX_I^2}{\text{MSE}}) $$ 3. 硬件配置:建议至少配备NVIDIA RTX 3080(12GB显存) ### 四、典型系统架构图 ``` [输入接口] → [预处理模块] → [深度神经网络] → [后处理模块] → [输出接口] ↑ ↑ [模型仓库] [GPU加速引擎] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值