上传一张图片,通过使用flux四步出图lora,将图片进行多倍放大的同时,增加细节,让原图片更真实,减少AI感!
借助LoRA(Low-Rank Adaptation)技术,FluxDev模型实现了4步快速出图,同时结合放大图像技术,进一步提升了生成图像的实用性和质量
FluxDev模型与LoRA的结合
FluxDev模型4步出图的核心在于LoRA技术的应用。LoRA是一种高效的模型微调方法,通过在原有模型的基础上添加低秩适配器,能够在不改变模型主体结构的情况下,快速适应新的任务或风格。这种技术使得FluxDev模型能够在极短的时间内生成高质量的图像,仅需4步即可完成出图,大大提高了生成效率。
放大图像技术的重要性
在图像生成过程中,尤其是对于需要高分辨率细节的应用场景,放大图像技术是不可或缺的。由于许多原始图像的分辨率较低,直接生成的图像可能无法满足实际需求。通过放大图像技术,可以将生成的图像分辨率提升至512x512甚至更高,从而丰富图像细节。例如,使用Topaz软件或StableSR脚本等工具,可以在放大图像的同时保持较好的细节表现。
FluxDev模型4步出图的工作流程主要包括以下几个步骤:加载FluxDev模型、加载LoRA适配器、生成图像以及使用放大模型提升图像分辨率。这种工作流程不仅简化了操作,还显著提高了图像生成的速度和质量。
从效果来看,FluxDev模型结合LoRA和放大图像技术后,生成的图像不仅保留了Dev模型应有的质感和细节,还能在极短时间内完成出图。例如,在一些测试中,FluxDev模型能够在不到2秒的时间内生成一张1024x1024的高质量图像。
FluxDev模型4步出图技术结合LoRA和放大图像技术,为图像生成领域带来了新的突破。它不仅大幅减少了生成时间,还提升了图像的细节和质量,使其在艺术创作、商业设计以及娱乐等领域具有广阔的应用前景。
FluxDev模型的这一创新应用,展示了人工智能图像生成技术在效率和质量上的巨大潜力,为未来的发展提供了新的方向。
为了帮助大家更好地掌握 ComfyUI,我花了几个月的时间,撰写并录制了一套ComfyUI的基础教程,共六篇。这套教程详细介绍了选择ComfyUI的理由、其优缺点、下载安装方法、模型与插件的安装、工作流节点和底层逻辑详解、遮罩修改重绘/Inpenting模块以及SDXL工作流手把手搭建。
由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取
一、ComfyUI配置指南
- 报错指南
- 环境配置
- 脚本更新
- 后记
- …
二、ComfyUI基础入门
- 软件安装篇
- 插件安装篇
- …
三、 ComfyUI工作流节点/底层逻辑详解
- ComfyUI 基础概念理解
- Stable diffusion 工作原理
- 工作流底层逻辑
- 必备插件补全
- …
四、ComfyUI节点技巧进阶/多模型串联
- 节点进阶详解
- 提词技巧精通
- 多模型节点串联
- …
五、ComfyUI遮罩修改重绘/Inpenting模块详解
- 图像分辨率
- 姿势
- …
六、ComfyUI超实用SDXL工作流手把手搭建
- Refined模型
- SDXL风格化提示词
- SDXL工作流搭建
- …
由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取